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Chapter 1

Introduction

1.1 Portfolio selection: history and development

The portfolio optimisation problem is a two objective problem. On the one hand, it is a

question of how to determine an amount (proportion, weight) of money to invest in each

type of asset within the portfolio in order to receive the highest possible return (or utility)

by the end of the investment period. While on the other hand, an appropriate level of

risk should be achieved together for an acceptable level of return.

Modern Portfolio Theory (MPT) began with a paper [52] and a book [53] written by the

Nobel laureate Harry Markowitz. Many researchers consider the emergence of this theory

as the birth of modern financial economics (see, for example [69]). The cornerstones

of Markowitz’s theory are the concepts of return, risk and diversification. It is widely

accepted [69] that an investment portfolio is a collection of income-producing assets that

have been acquired to meet a financial goal. However, an investment portfolio as a concept

did not exist before the late 1950s.

In 1938 John Burr Williams in his book “The Theory of Investment Value” [85] introduced

the dividend discount model. The author suggested to solve the investment problem by

finding a good stock and buying it at the best price. Many investors followed this advice

and investing was perceived as a form of gambling for the rich people.
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In 1949 Benjamin Graham wrote the book “The Intelligent Investor” [34], in which he

advised that the investors in their decisions should take into account a company‘s funda-

mentals, i.e. company shares’ real (supported by the value of the company assets) price.

The investor’s goal then according to Graham’s investing philosophy is to find funda-

mentally good companies’ shares at a cheap price. This concept is known as “margin of

safety”.

Markowitz in 1952 used mean return, variance (as a risk measure of the distribution of

returns) and covariance (as a measure of the degree to which returns on two risky assets

move in tandem [52]) to derive an efficient frontier where for each optimal portfolio its

variance is minimised for a given portfolio expected return (or, inversely, portfolio expected

return is maximised for a given variance). Hence, the optimal portfolio can be chosen in

accordance with the investor’s preferences and their attitude to risk and return.

One of Markowitz biggest contributions to the financial theory is the concept of diver-

sification as a way to reduce risk. Scientific thoughts from previous years encouraged

Markowitz and his followers to conceptualise the framework of portfolio selection, and,

eventually, led to the solution of the portfolio optimisation problem.

Remarkably, there is a long history behind the Expected Utility Theory (EUT) that

started in 1738 when Daniel Bernoulli investigated the St. Petersburg paradox. He

was the first scientist who separated the definitions of “price” and “utility” in terms of

determining an item’s value. Price is an assessment of an item and depends only on the

item itself and its characteristics, i.e. price is the objective value. In contrast, utility

is subjective and “is dependent on the particular circumstances of the person making

the estimate” [14]. EUT follows the assumptions of the neoclassical theory of individual

choice in cases when risk appears. It was formally developed by John von Neumann and

Oscar Morgenstern in their book “Theory of Games and Economic Behavior”(1944) [56].

The theory’s main concern is the representation of individual attitudes towards risk [45].

Since the 1950s, several papers appeared showing that the empirical evidence on indi-

viduals’ patterns of choice under risk are inconsistent with the expected utility theory,

see e.g. [61]. It is also shown [64] that the players’ behaviour systematically violates the
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independence axiom. At the same time the EUT is unable to explain many paradoxes

that take place in economic practice (for example, Allais Paradox [5]).

The number of EUT’s drawbacks led to the appearance of the Behavioural Portfolio

Theory (BPT) – a new fundamental framework which was designed to compensate for

the misguidings of the EUT. To date it is the best theory explaining the behaviour of

the players and investors in the experiment in decision making under risk. In contrast

to EUT, BPT fills in some gaps in explaining controversial economic phenomena, such as

Ellsberg Paradox [25].

The recent financial crisis has shown the shortcomings of the individual market instru-

ments and the low level of validity in investment decisions. This can be explained by the

dismissive investors’ attitude in assessing the real risks, they usually just follow their own

intuition. In the investment practice, the situation of unaccounted risks is fairly common,

hence, the investors need to have a reliable mathematical tool for justification of invest-

ment decisions. In this thesis we consider BPT as a tool which takes into account the

behavioural errors.

BPT was developed by Shefrin and Statman in 2000 [73]. The main idea of the theory

is the maximisation of the value of the investor’s portfolio in which several goals are met

and these goals are considered with different levels of risk aversion. BPT is based on

two main theories: Security-Potential/Aspiration Theory (SP/A) and Prospect Theory

(PT). SP/A theory, established by Lola Lopez in 1987 (see [50]), is a general choice (not

only financial) risk framework and not specified for the portfolio selection problem. In

our research we focus on the PT [44] devoted to human behaviour in financial decision

making under uncertainty.

PT adopts the main idea from the expected utility theory and adds up the vital psy-

chological components, which take into account human behaviour in the decision making

process. It also fixes different types of inaccuracies that took place in previously developed

behaviour based theories, e.g the independence axiom and the inconsistence assumption

of a uniform attitude towards risk, see [73].
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As far as we aware, despite many papers devoted to PT, only a few of them have consid-

ered its practical application in economics, in particular, in financial markets. It can be

explained, according to Barberis [9], by the fact, that PT is not ready to be used as a real

economic model.

In this thesis, we apply the PT model to several empirical and experimental data sets

in order to find an optimal solution to the portfolio selection problem. We also test the

results out-of-sample and compare the PT model’s performance with the results obtained

in the framework of the Markowitz mean variance model and the index tracking problem.

1.2 Main objectives of the thesis

The goal of this thesis is to identify potential benefits of behaviourally based prospect

theory model depending on different market situations in comparison with traditionally

accepted portfolio optimisation models. The main objectives according to the main goal

are as follows:

• Development of the appropriate solution approaches to prospect theory and its ex-

tended version, cumulative prospect theory;

• To identify the optimal solution approach by means of comparative analysis and

selection of optimal parameters;

• To investigate the performance of the studied models (prospect theory and cumula-

tive prospect theory models) in comparison with mean variance and index tracking

models in different settings:

– to consider them with a cardinality constraint;

– to consider them with a CVaR constraint;

• To analyse the performance of the models in out-of-sample data for different market

conditions (using simulated data of bullish and bearish market dynamics).
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1.3 Thesis structure

The thesis consists of five chapters, a bibliography and appendices. Chapter 1 is an

auxiliary part of the work that provides introductory knowledge, the main objectives and

motivation. This chapter contains a brief insight into the history of the portfolio selection

problem.

Chapter 2 provides a literature survey for the main theories separately and mathematical

formulations of the considered portfolio optimisation models as well as the definitions of

some risk measures.

In Chapter 3 we develop several solution approaches for nonlinear portfolio optimisation

problems. In Section 3.1 we describe two basic heuristic algorithms, namely the differential

evolution algorithm and the genetic algorithm. These are able to deal with prospect theory

and cumulative prospect theory problems which are non-convex problems as well as with

cardinality and CVaR constrained prospect theory problems. We use an extended version

of the differential evolution algorithm namely the differential evolution algorithm with

smoothing of the utility function using splines in order to verify the solution and find the

optimal solution approach. In Section 3.2 solution approach to the mean-variance-CVaR

model is considered.

In Chapter 4 we present our empirical study and comparative analysis. Section 4.1 is

devoted to basic settings for our empirical studies such as data used in the research,

parameters of the models and parameters of the heuristic solution approaches. In Section

4.2 the performance of the mean variance and behaviourally based models is analysed.

We split the models into 3 groups: basic models, models with cardinality constraints

and models with a CVaR constraint. The empirical results obtained for each model are

analysed in-sample and out-of-sample. We simulate the dynamics of a bullish and bearish

market for the out-of-sample tests as well as apply the bootstrap method. In Section 4.3

the empirical results and comparative analysis of the index tracking model and prospect

theory model with index tracking are presented.

We describe the most important findings and conclusion in Chapter 5. The main contri-

bution of this thesis as well as the ideas for future work are presented in this chapter.
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Chapter 2

Literature review

First we set out some general notation that we use for all of our models. In this chapter

and in the rest of the thesis, we will use the following notation:

N - number of assets,

S - number of scenarios (time periods),

K - cardinality limit (desirable number of assets in the portfolio),

ps - probability of scenario s,
∑
s

ps = 1,

r̄i - mean return of asset i,

ris - return of asset i in scenario s, i = 1, . . . , N, s = 1, . . . , S,

r0 - reference point,

ωi ≥ 0 - weight of asset i in the portfolio,

x = (ω1, . . . , ωN) - a portfolio and
N∑
i=1

ωi = 1,

X = {x = (ω1, . . . , ωN) ∈ R
N
+} - set of all portfolios,

rs(x) - return of portfolio x in scenario s,

d - desirable level of return,

z - constraint on CVaR,

� denotes a preference relation over the set of prospects, wherein � is a strict preference

relation and ∼ is an indifference relation.
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2.1 Modern portfolio theory

In this section we consider several basic assumptions of modern portfolio theory that are

important for our research. MPT says that investors act rationally and that they are risk-

averse. This assumption comes from the efficient market hypothesis and means that people

choose alternatives that are economically more beneficial for them. Originally, Markowitz

explained rationality of an investor in terms of certainty and return. He devoted his

technique to people who prefer certainty to uncertainty and who prefer higher return to

less return. At the same time, he accepted that there is a type of investor who acts more

as a speculator. However, he did not assume that even a rational investor becomes risk

seeking in specific circumstances. According to Markowitz the MPT does not work for

such cases [53].

Among the latest attempts to incorporate human mentality into a logical and practical

mean variance scheme we would like to mention the results published in “Portfolio Opti-

mization with Mental Accounts” (2010). In this study the authors considered a portfolio

as a set of subportfolios with different financial goals and risk/return investor preferences.

Mathematically the idea is to use the mean variance quadratic utility function with a risk

aversion coefficient. Then they implied different levels of risk-aversion depending on the

specific goals of the subportfolio into the Markowitz model [23]. “These generalizations

of MVT (Mean-Variance Portfolio Theory) and BPT (Behavioural Portfolio Theory) via

a unified MA (Mental Accounting) framework result in a fruitful connection between in-

vestor consumption goals and portfolio production” [23]. However, some questions are

still left unanswered. For example, the diversification problem was completely ignored in

the paper.

In general, the diversification problem is a question of how many assets in the portfolio will

be necessary and sufficient to provide an efficient portfolio in respect of the transaction

costs. Moreover, the optimal level of diversification should provide convenience for the

portfolio management. We will consider this problem in further discussions.

Modern portfolio theory works under the assumption that asset returns are jointly nor-

mally distributed random variables [41]. However, in the early 1960s several scientists

13



demonstrated that the Gaussian distribution is not suitable for the description of the

return distribution. For example, Mandelbrot [51] and Fama [27] presented the models of

the empirical heavy tailed character of the financial asset returns. These empirical returns

demonstrated significant kurtosis, asymmetric skewness and heavy tails.

Nowadays, it is a widely accepted fact that return distributions have fat tails (leptokurtic

returns). These fat tails are defined as rare but significant market events which can cause

extreme gains or losses in a portfolio. In the normal distribution framework the probability

of such an event is equal to 0.1%, in reality, these fat-tail events occur more frequently.

It is known that the Markowitz mean variance model provides an optimisation procedure

which is based on historical average returns in order to estimate future portfolio returns. It

means that the mean variance portfolio is calculated using mean and covariance matrices

on data which reflects market trends in the past. However, historical estimates often

provide poor prediction of future behavior of the assets in the real market conditions [15].

That is why many empirical studies of the portfolio selection problem include not only

in-sample results but out-of-sample testings.

Another weakness of the MPT are unaccounted transaction costs, which could affect

significantly the financial performance of the portfolio in the investment process [59].

On the one hand, in fast changing market conditions the rebalancing stage plays a very

important role in keeping the portfolio optimal. This activity leads to an increase in the

transaction costs and, hence, decrease in the current profit. On the other hand, ignoring

the transaction cost in a portfolio selection model often leads to an inefficient portfolio in

practice [58].

In this thesis we show how to solve this problem in terms of the investor’s preferences of

diversification level. Using a cardinality constraint in the problem formulation which is a

limit on the number of assets in the portfolio, we restrict the transaction costs.

It is empirically confirmed that diversification beyond the level of 8-10 assets in a portfolio

may not be rewarding [31], [26], [42]. From a mathematical point of view the optimal

portfolio in MPT is always well-diversified because risk minimisation depends on the

covariance matrix of return. The larger the number of assets held in the portfolio the
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greater the combined value of the risk becomes for the stocks with different parameters of

the return distribution. It is found [76], [72], that the variance-covariance matrix of returns

of a large size portfolio tends to conceal significant singularities or near-singularities, hence,

the number of securities in the portfolio should be limited.

Taking into account the assumptions considered above we can conclude that MPT is both

sufficiently general and static for a significant range of practical situations and simple

enough for theoretical analysis and numerical solution. At the same time, the portfolio

selection problem becomes even more complicated in modern economic conditions which

demand more flexible and multi-factor models and tools to satisfy investor’s preferences

while MPT’s assumptions lead to some serious limitations. MPT “is very useful, but it

is descriptive, not prescriptive, and relies on assumptions that may not always be valid”,

according to Curtis [21].

Below we mathematically formulate the mean variance model with a cardinality con-

straint.

2.1.1 Formulation of the mean variance model

The variance of r(x) is defined as σ2(r(x)) = E[(r(x) − E(r(x)))2]. The variance of the

portfolio return r(x) = ω1r1+ . . .+ωNrN is derived from the vector x = (ω1, . . . , ωN) and

can be written as:

σ2(r(x)) =
N∑
i=1

N∑
j=1

σij ωi ωj,

where σij = σi σj �ij (here �ij is the correlation coefficient between ri and rj) is the

covariance of ri and rj and x is the vector of variable weights (unknown quantities)

ωi, i = 1, . . . , N, of assets in the portfolio.

In our research we consider the mean variance model [52] where variance is minimised with

a fixed (prescribed) level of portfolio expected return. This model allows the investor to

include all the available assets in the market. In the case when the number of assets in

the portfolio is restricted by the investor preferences, the cardinality constraint should be

introduced.
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Let K be the desirable number of assets in the portfolio, let us define the indicator

ϕi, i = 1, . . . , N :

ϕi =

⎧⎨
⎩ 1, if asset i is included in the portfolio,

0, otherwise,

with li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N,

where li and ui are a numerical boundaries which reflect the lower and upper level of

investment in the asset if the asset is to be invested in.

It should be noted that one can transfer this model with a cardinality constraint into the

basic MV model if we put K = N . For the sake of simplicity we can use a unified for-

mulation for both, basic and cardinality constrained MV model. Then the mean variance

portfolio optimisation problem with a cardinality constraint can be written as:

minimise MVcc(x) =
N∑
i=1

N∑
j=1

σij ωi ωj, (2.1)

subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.2)

N∑
i=1

ωi = 1, (2.3)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.4)

N∑
i=1

ϕi ≤ K, (2.5)

ϕi ∈ {0, 1}, i = 1, . . . , N. (2.6)

Here constraint (2.2) ensures that the optimal portfolio has an expected return d, con-

straint (2.3) imposes that the investment weights sum to one (budget constraint). In-

equality (2.4) describes a buy-in threshold and restricts asset investment. It is easy to

see that if an asset i is not held, i.e. ϕi = 0, then the corresponding weight ωi = 0. If

an asset i is held, i.e. ϕi = 1, then (2.4) ensures that the value of ωi lies between the
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appropriate lower and upper limits, li and ui respectively [86]. Inequality (2.5) ensures

that the number of assets in the optimal portfolio is at most K. The binary definition

(2.6) reflects the inclusion (or exclusion) of an asset in the portfolio.

According to the problem formulation and theoretical basis the mean variance model

manages the risk of the portfolio taking into account the covariance matrix and standard

deviation of assets. Modern portfolio theory and the work of Harry Markowitz on di-

versification and risk of a portfolio established the Capital Asset Pricing Model (CAPM)

which distinguishes two types of portfolio risk: systematic and unsystematic. Systematic

risk is considered as a market risk, i.e. is undiversifiable and common for all assets in the

market while unsystematic risk is associated with each security. In terms of CAPM the

optimal portfolio which aims to achieve the lowest risk together with any possible return

is the market portfolio which, in fact, could be a market index. Following the assumption

of CAPM the index tracking problem for portfolio selection is a replication of the “ideal”

market portfolio in order to reduce unsystematic risk. In the next section we consider the

index tracking portfolio selection problem.

2.2 Formulation of the index tracking model

Index tracking, known as a form of passive fund management, aims to produce optimal

portfolios which replicate the index dynamics providing a balance between risk and re-

turn. However, the index tracking model normally includes almost all available assets

in the market that leads to large transaction costs and a portfolio which is very difficult

to manage because of its diversity [12]. Thus, the cardinality constrained index track-

ing model is also considered in this thesis. We explore this model in comparison with

behaviourally based models in terms of diversification and tracking error issues.

In our research we use a simple index tracking model in the form of full replication as

we are minimising the tracking error in order to reduce the difference between the index

return and the portfolio return.

Let at time s

rms - index return,
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os = max(rs(x)− rms, 0) - portfolio return amount over the index return,

us = max(rms − rs(x), 0) - portfolio return amount under the index return.

Tracking error (TE) for a given time period is equal to |rs(x) − rms|. Clearly, at time s

at least one of os or us is equal to 0, i.e. we can define a new quantity

TEs = os + us =

⎧⎨
⎩ os, if os ≥ 0,

us, otherwise.
(2.7)

Let us define the tracking error in the simplest possible way: as the difference between

the index and portfolio returns over all time periods s = 1, . . . , S:

TE =
S∑

s=1

TEs. (2.8)

Here we would like to mention that tracking error can be defined in different ways, for

example, in [67] the tracking error is defined as the root mean square of the difference

between index and portfolio returns.

As was mentioned previously we can use the formulation of the cardinality constrained

model for the basic model as well when we put K = N . Then the index tracking problem

with cardinality constraint can be formulated as [63]:

minimise ITcc(x) = minimise TE(x) =
S∑

s=1

(os + us), (2.9)

subject to the constraints

N∑
i=1

ωiris = rms + os − us, s = 1, . . . , S (2.10)

N∑
i=1

ωi = 1, (2.11)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.12)

N∑
i=1

ϕi ≤ K, (2.13)

ϕi ∈ {0, 1}, i = 1, . . . , N, (2.14)
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ωi ≥ 0, i = 1, . . . , N, (2.15)

os, us ≥ 0, s = 1, . . . , S. (2.16)

Equations (2.10) check the difference between returns of the optimal portfolio and the

index for each time period. Constraint (2.11) imposes that the investment weights sum

to one (budget constraint) similar to the MV model. The constraints (2.12), (2.13) and

(2.14) are formulated similar to the MV model and are used for restricting the number of

assets in the portfolio.

2.3 Prospect theory

Prospect theory is a behavioural economic theory that describes decisions between alter-

natives that involve risk, where the probabilities of outcomes are known. It was developed

as a descriptive model of decision making under uncertainty by two psychologists, Daniel

Kahneman and Amos Tversky, and published in the Econometrica in 1979 [44]. The

authors relied on a series of small experiments to identify the manner in which people

make choice in the face of risk. The theory says that people make decisions based on the

potential value of losses and gains rather than the final outcome, and that people evalu-

ate these losses and gains using heuristics. Although the original formulation of prospect

theory was only defined for lotteries with two non-zero outcomes, it can be generalised

to n outcomes. Generalisations have been used by various authors (see, for example [71],

[17], [28], [81]).

The original PT choice process consists of two phases. During the first phase, which is

called editing, an agent defines their own (subjective) meaning of a gain and a loss by

setting a reference point r0 for the portfolio return, which represents zero gain (or zero loss)

for this particular person. During the second stage, which is called the evaluating phase,

our investor calculates the values of the prospect theory utility based on the potential

outcomes and their respective probabilities, and chooses the maximal one.

Together with the original version of prospect theory in this section we also consider its

extended version called Cumulative Prospect Theory (CPT), proposed in 1992 by Tversky
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and Kahneman [78]. According to the authors, CPT can be applied not only for the

discrete, but also for the continuous distributions, and it allows incorporation of different

decision weights for gains and losses. However, some researchers believe that CPT may

be descriptively not as strong as PT (see, e.g. [64]). In this research we investigate the

performance of both versions (PT and CPT) in order to identify the best models for

different types of experimental data according to several criteria.

We would like to note, that only a few (C)PT studies contain numerical results. It can

be explained by the computational difficulties connected to the complexity of the (C)PT

objective function. Due to this fact only simple cases (2-3 artificially created assets) of

the portfolio selection problem are available in the literature. Among them [44], [33],

[38], [48], [49] for the prospect theory and [8], [13], [37], [88], [61] for cumulative prospect

theory. Moreover, as far as we aware, all of them were based on normally distributed

testing data. However, it is well known, that many asset allocation problems involve non-

normally distributed returns since commodities typically have fat tails and are skewed.

Our research aims to fill in this gap.

Clearly, the lack of numerical data for (cumulative) prospect theory leads to the lack of

comparison analysis of traditional (mean-variance) approaches with behaviourally based

approaches (PT and CPT). The first effort to compare these two models was made in

2004 [49]. The idea was to select the portfolio with the highest prospect theory utility

amongst the other portfolios in the mean variance efficient frontier. Following this route,

Pirvu and Schulze in 2012 presented the results confirming that an analytical solution

is mostly equivalent to maximising the CPT objective function along the mean variance

efficient frontier [61]. In this thesis we compare performances of both models separately

using different types of data and simulation tests.

Below we mathematically formulate both the PT and CPT models with and without

cardinality constraint.
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2.3.1 Formulation of the prospect theory model

Consider the game:

(r−m, p−m), (r−m+1, p−m+1), . . . , (r0, p0), . . . , (rn−1, pn−1), (rn, pn), (2.17)

where (rs, ps), s = −m,−m+1, . . . ,−1, 0, 1, . . . , n−1, n, means that the gambler wins

rs with probability ps, of course, the sum of all probabilities is equal to 1, i.e.
n∑

s=−m

ps = 1;

r0 denotes some numerical boundary called the reference point (constant) which depends

on the investor’s preference. Let rs define the outcomes of the game (2.17) such that:

• if s = 0, i.e. rs = r0, then the investor’s gain is 0,

• if s > 0, then rs > r0, hence the investor won from this investment,

• if s < 0, then rs < r0, hence the investor lost.

According to the prospect theory one needs to make additional mental adjustments in the

original probability and outcome value functions p and r, which is equivalent to replacing

a standard utility function by the prospect theory utility function. In order to do so we

transform the original p and r into the prospect theory probability weight function π(p)

and value function v(r). Figure 2.1 contains the graphs for the value function v(r).

The prospect theory probability weighting function π(p) measures, according to [44], “the

impact of events on the desirability of prospects, and not merely the perceived likelihood

of these events”, i.e. expresses the weights of the decisions to the probabilities. Let us

mention that π(p) is an increasing function, π(0) = 0, π(1) = 1, and for very small values

of probability p we have π(p) ≥ p. The probability weighting function based on the

observation that most people tend to overweigh small probabilities and underweigh large

probabilities.

The prospect theory value function v(r) describes the (behavioural) value of the gain/loss

outcome. Kahneman and Tversky experimentally obtained the value function which was
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value function

r0

Figure 2.1: Prospect theory value function v(r) with
α = β = 0.88 and λ = 2.25

dependent on the initial value deviation. This function is usually asymmetric with respect

to a given reference point r0 (which reflects different investor’s attitude to gains and losses),

it is concave upward for gains and convex downward for losses. Moreover, generally

the value function v(r) grows steeper for losses than for gains, i.e. for s > 0 we have

v(rs) ≤ −v(r−s).

The explicit formula for the prospect theory value function v(r), given in [78], is:

v (r) =

⎧⎨
⎩ (r − r0)

α, if r ≥ r0,

−λ (r0 − r)β, if r < r0,
(2.18)

where α = β = 0.88 are risk aversion coefficients with respect to gains and losses accord-

ingly, λ = 2.25 is the loss aversion coefficient which underlines differences in the investor‘s

perception of gains and losses. We note that the value function (2.18) is nonlinear with

respect to return r and, hence, the portfolio variable x.

The prospect theory utility function can be written in terms of π and v as:

PTU =
n∑

s=−m

π(ps) v(rs) =
n∑

s=−m

ps v

(
N∑
i=1

rsi ωi

)
. (2.19)
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Clearly, the formula (2.19) consists of two parts. The part in the gain domain (i.e. when

r ≥ r0) is concave and the part in the loss domain (i.e. when r ≤ r0) is convex, capturing

the risk-averse tendency for gains and risk-seeking tendency for losses as seen by many

decision makers [64]. Let as mention, that for the sake of simplicity in our study we use

π(p) = p. Clearly, the prospect theory utility function (2.19) is a nonlinear function.

The prospect theory model aims to find the best (optimal) portfolio which maximises the

prospect theory utility function where decision variables are weights of available assets

ω subject to constraints on a desirable level of return, budget and short sales. This is a

nonlinear and non convex optimisation model as the objective function is nonlinear and

non convex. In order to solve this problem we use heuristics which are an inexact solution

approach.

According to the prospect theory portfolio selection problem looks as follows:

maximise PT(x) =
S∑

s=1

ps v

(
N∑
i=1

rsi ωi

)
, (2.20)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.21)

N∑
i=1

ωi = 1, (2.22)

ωi ≥ 0, i = 1, . . . , N. (2.23)

We now detail some mathematical properties of the prospect theory model.

1. Completeness:

For all portfolios x1, x2 x1 � x2 or x2 � x1.

2. Transitiveness:

x1 � x2, x2 � x3 ⇒ x1 � x3.
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3. Independence:

∀x1, x2, x3 ∀ς ∈ (0, 1) : x1 � x2 ⇔ ςx1 + (1− ς)x3 � ςx2 + (1− ς)x3.

For more details and proof of the properties given above see [78] and [83].

2.3.2 Formulation of the cumulative prospect theory model

Consider the game (2.17) under the following condition:

r1 ≤ . . . ≤ rk ≤ r0 ≤ rk+1 ≤ . . . ≤ rS,

i.e. all outcomes of the game (r1, . . . , rS) are arranged in ascending order. Therefore, for

j = 1, . . . , k the loss is r0 − rj and for j = k + 1, . . . , S the gain is rj − r0.

Let us introduce the probability weighting function π, which is strictly increasing on [0, 1],

π(0) = 0, π(1) = 1. For any prospect j, we define a positive prospect weights π+ or a

negative prospect weights π− depending on the corresponding outcome. We now define

the probability weighting functions π− and π+, which describe decision weights for gains

and losses.

π−(pj) =
pδj

(pδj + (1− pj)δ)1/δ
,where j = 1, . . . , k, (2.24)

and

π+(pj) =
pγj

(pγj + (1− pj)γ)1/γ
,where j = k + 1, . . . , S, (2.25)

where δ, γ ∈ (0, 1) reflect quantitative values of risk seeking for losses and risk aversion for

gains. These probability weighting functions π−(·) and π+(·) capture the overweighing

of low probabilities if we put δ = 0.61, γ = 0.69 in accordance with [78]. Figure 2.2

illustrates the cumulative prospect theory probability weighting function.

We would like to note that in the prospect theory model π+ = π−, hence, prospect theory

assumes that decision weights for gains and losses are equal. In this connection we can

consider CPT as a particular case of the prospect theory.
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Figure 2.2: Cumulative prospect theory weighting function w

The portfolio optimisation problem for the cumulative prospect theory (CPT) model can

be formulated as:

maximise CPT(x) =
S∑

s=1

π(ps) v

(
N∑
i=1

rsi ωi

)
, (2.26)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.27)

N∑
i=1

ωi = 1, (2.28)

ωi ≥ 0, i = 1, . . . , N, (2.29)

where

π(ps) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π−

(
s∑

j=1

pj

)
− π−

(
s−1∑
j=1

pj

)
, s = 1, . . . , k,

π+

(
S∑

j=s

pj

)
− π+

(
S∑

j=s+1

pj

)
, s = k + 1, . . . , S,

(2.30)

where pj is the probability.

Here k is such that

r1 � . . . � rk � r0 � rk+1 � . . . � rS, (2.31)
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and v(r(x)) is the function of outcomes assessment defined by the following formula

v (r(x)) =

⎧⎨
⎩ (r(x)− r0)

α, if r(x) ≥ r0,

−λ (r0 − r(x))β, if r(x) < r0.
(2.32)

Let us mention that the CPT model possesses all the mathematical properties of the

prospect theory model described in Section 2.3.1, namely, completeness, transitivity and

independence. It also has a very important property, which is stochastic dominance of

the preference relation [20], i.e. if for portfolios x1 and x2 we have rj(x1) � rj(x2) ∀j and

rj(x1) � rj(x2) for at least one j with pj > 0 then (r1(x1), p1(x1); . . . ; rn(x1), pn(x1)) �

(r1(x2), p1(x2); . . . ; rn(x2), pn(x2)).

2.3.3 Prospect theory model with a cardinality constraint

Following the logic and notation of Section 2.1.1 we formulate the prospect theory model

with a cardinality constraint as:

maximise PTcc(x) =
S∑

s=1

ps v

(
N∑
i=1

rsi ωi

)
, (2.33)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.34)

N∑
i=1

ωi = 1, (2.35)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.36)

N∑
i=1

ϕi ≤ K, (2.37)

ϕi ∈ {0, 1}, i = 1, . . . , N. (2.38)
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2.3.4 Prospect theory model for index tracking

Studying the prospect theory problem we found that the principle of the model is very

similar to that of the index tracking portfolio optimisation problem. The main common

feature is that behaviourally based models use a reference point as the limit for desired

level of returns in each time period similar to an index tracking model which uses the

index as a reference point. Thus it is easy to implement the idea of the index tracking

problem into prospect theory by changing the value of the reference point. In this case

we let r0 be a vector of the index value for each time period of the data set not a scalar as

it is in the original version of (cumulative) prospect theory. We also remove the limit on

the desirable level of returns similar to the index tracking problem which focuses on the

index value as a level of return for each time period. We call this model prospect theory

with index tracking (PT with IT).

We also implemented a cardinality constraint in these models to address the issue of too

diversified a portfolio. It is very interesting to compare not only the IT and PT with

index tracking problems but these models with the limit on the number of the assets in

the portfolio. We formulate the prospect theory model with index tracking and with a

cardinality constraint as:

maximise PT+ITcc(x) =
S∑

s=1

ps v

(
N∑
i=1

rsi ωi, rms

)
, (2.39)

subject to the constraints
N∑
i=1

ωi = 1, (2.40)

li ϕi ≤ ωi ≤ ui ϕi, i = 1, . . . , N, (2.41)

N∑
i=1

ϕi ≤ K, (2.42)

ϕi ∈ {0, 1}, i = 1, . . . , N, (2.43)

where

v (r(x), rms) =

⎧⎨
⎩ (r(x)− rms)

α, if r(x) ≥ rms,

−λ (rms − r(x))β, if r(x) < rms.
(2.44)
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As one can see in equation (2.44) the value function for the prosect theory model with

index tracking is defined as a dynamic not constant due to the fact that instead of a

constant reference point r0 here we use a dynamic index rm which takes different values

in each scenario (time period).

2.4 Measures of risk

The concept of risk plays one of the major roles in the portfolio selection problem.

Markowitz was the first scientist who postulated the dependence between risk level and

returns. He suggested to minimise risk subject to a desirable level of expected return and

its dispersion. Some of the researchers supposed that it is possible to reach zero level of

risk (see, for example, [85] and others). However, the truth is that risk can be reduced

with the help of diversification, but not fully eliminated without changing the return [69].

In this study we consider one symmetric measure of risk, which is variance and two

asymmetric ones, called Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR).

Definition 2.1. Variance

Consider a continuous random variable x̃ with density f = fx̃, distribution F = Fx̃ and

expected return μ := E(x̃) :=

∫ +∞

−∞

xf(x)dx. Then we define the variance of the variable

x̃ as:

σ2 :=

∫ +∞

−∞

(x− μ)2f(x)dx (2.45)

and its standard deviation is:

σ :=

[∫ +∞

−∞

(x− μ)2f(x)dx

]1/2
. (2.46)

Irving Fisher was probably the first scientist who suggested to use variance as a measure

of risk in his paper [30] (see also [69]).

The variance as a measure of risk has an advantage of being simple. As already discussed,

computational simplicity is very important for the portfolio selection problem. However,

there are limitations for this case.
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The first limitation is that it is not sensitive to higher moments (for example skewness,

kurtosis) of the probability distribution and there are many distributions that have the

same mean and same variance. In other words, the mean variance framework does not

capture the complexity of risk.

Another issue is that in the mean variance framework gains and losses are considered

symmetrical. Many statistical measures of risk do so but they do not seem to be adequate

for finance: investors do not treat gains and losses symmetrically [44]. They care about

“downside risk” (investor are loss averse).

The asymmetric nature of risk is not the only reason why a focus on the downside is

important. If we assume that financial returns follow a multivariate normal (or elliptical)

distribution, then any downside risk measures can be expressed as a function of mean and

variance (or some other measure of scale when variance is undefined). As a consequence,

under these assumptions, measuring variance would be sufficient. Empirical research (see,

for example, [51] and [27]), however, has demonstrated that financial returns, and hedge

fund returns in particular, are skewed and fat-tailed which means that the focus on the

downside cannot be understated.

Definition 2.2. VaR

Let r be the specific level with which the value x of a given portfolio will be compared

to, at the end of a given time period. If x < r, then there is a loss, whose value is r − x.

The portfolio’s loss is thus given by the random variable

l̃ := r − x̃. (2.47)

The probability that l̃ ≤ l is given by the distribution function

Fl̃(l) := P (l̃ ≤ l) =

∫ l

−∞

fl̃(t)dt. (2.48)

Using the loss distribution (2.48) for a given time period and a given confidence level

1− α, 0 ≤ α ≤ 1, the VaR of x̃ is defined as:

VaR(x̃) := F−1

l̃
(1− α), (2.49)
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where (1− α) · 100% is a quantile of the portfolio’s loss distribution.

The reasons and grounds for the development of VaR include the regulators’ pressure for

better control of financial risks, financial markets globalisation, which exposed institutions

to more sources of risk, and technological developments that contributed to enterprise-

wide risk management [43].

Basel III issued by the Basel Committee on Banking Supervision accumulates two years of

regulatory reform including Basel 2.5. It introduced a new regulatory regime for capital,

liquidity and banking supervision, where VaR is described as a compulsory measure of

risk.

In the academic literature the most used two confidence levels are 95% and 99%. Re-

searchers do not have preferences which level to apply in their models and calculations.

However, in real economic application most financial institutes choose only 99% in order

to protect their investments with higher level of reliability.

VaR is a single, summary, statistical measure of possible portfolio losses. For a given time

horizon and a confidence level 1−α the VaR of a portfolio is the loss of market value over

the time horizon that is exceeded by the portfolio only with probability α.

In comparison to traditional measures of risk, VaR represents an aggregate view of a

portfolio risk considering leverage, correlations, and positions. VaR can be applied to a

variety of financial instruments, including derivatives [43].

Despite the fact that VaR is a very popular risk measure, it has some mathematical

characteristics which are unfavorable for application of this measure of risk to real world

financial problems. For instance, it has no subadditivity or convexity properties. This

drawback is highly criticised due to the fact that according to the diversification principle

of modern portfolio theory, a subadditive measure should generate lower measured risk

for those portfolios which are diversified than for a nondiversified one [22]. As for the

economy, under specific circumstances it can be more useful to divide a large company

into two smaller ones and the VaR risk measure is not suitable for this case [77].
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Also VaR is most often defined in terms of net outcomes or profit/loss. However, the

money value is not constant through time in a financial market. This creates ignorance of

the difference between the monetary value at one date and the monetary value at another

date. However, for small time periods and a single currency it performs well. As VaR

uses quantiles, it is necessary to pay attention to discontinuities and intervals of quantile

numbers. However, VaR fails to account for concentration of risks [7].

Another point is that VaR is adequate only based on standard deviation of normal dis-

tributions. In this case it is proportional to the standard deviation. The VaR for a

combination of two portfolios can be greater than the sum of the risks of the portfolios

separately. Also, VaR is difficult to optimise in the situation when it is calculated using

scenarios. In contrast to VaR, CVaR is known to have more beneficial properties than

VaR in these cases [65].

Definition 2.3. CVaR

Let x̃ be a random variable responsible for the return of a portfolio x over a specified

holding period and A% = α ∈ (0, 1) is a percentage representing a sample of the worst

case scenarios for the outcomes of x̃ (so called confidence interval, usually chosen as

α = 0.01 or α = 0.05). Thus, figuratively CVaR at a specified level α is the “average

losses in the worst A% of cases” [2], where “loss” means negative outcome of x̃. The

CVaR at a level α of x̃ is a negative value of the mean of the α-tail distribution of x̃ (with

respect to the extreme adverse outcomes) and its distribution function is rescaled to span

[0, 1]:

CVaRα(x̃) :=

∫
∞

−∞

zdF α
x̃ (z), (2.50)

where

F α
x̃ (z) =

⎧⎨
⎩ 0, if z > VaRα(x̃),

Fx̃(z)−α
1−α

, otherwise,

for more details see, for example, [65] or [68].

There is an alternative definition of CVaR, called “upper CVaR” which reflects the con-

ditional expectation of x̃ subject to x̃ > VaRα(x̃):

CVaR+
α (x̃) = E[x̃|x̃ > VaRα(x̃)].
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Mathematical properties of CVaR

Let c ∈ R and ỹ, ỹ1, ỹ2 be random variables representing the returns of the portfolios

y, y1 and y2 respectively, then CVaR has the following properties [2]:

1. Monotonicity: If ỹ1 ≤ ỹ2, then CVaRα(ỹ1) ≤ CVaRα(ỹ2).

2. Sub-additivity: CVaRα(ỹ1 + ỹ2) ≤ CVaRα(ỹ1) + CVaRα(ỹ2).

3. Translation invariance: CVaRα(ỹ + c) = CVaRα(ỹ) + c.

4. Positive homogeneity: CVaRα(c ỹ) = c CVaRα(ỹ), for c > 0.

5. Convexity: CVaRα(λỹ1 + (1− λ)ỹ2) ≤ λ CVaRα(ỹ1) + (1− λ) CVaRα(ỹ2),

for 0 < λ < 1.

It is known [60] that properties 2 and 4 are equivalent to convexity. It is important to

note that VaR does not satisfy these properties. This issue leads to limitation to its

application.

The Basel Committee proposed in 2012 the use of expected shortfall (also known as CVaR)

instead of VaR in market risk management. They suggest moving from VaR to expected

shortfall, a risk measure that better captures “tail risk” [57].

CVaR is an alternative measure of risk which quantifies the losses in the tail of the

distribution. CVaR is often used together with VaR and this combination of instruments

can be applied to the risk estimation for non-symmetric loss distributions (with high or low

skewness). Figure 2.3 reflects the meaning of VaR and CVaR in terms of the distribution

of returns.

CVaR and the formula for its minimisation were first delivered in the paper of Rockafellar

and Uryasev in 2000. They showed numerical effectiveness using case studies, involving

portfolio optimisation and option hedging [65].

Additionally, it was shown that imposing a CVaR constraint in the portfolio selection

problem can deliver better results than imposing a VaR constraint. VaR does not show

the extent of the losses that might occur beyond the threshold amount suggested by
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Figure 2.3: Value-at-Risk and Conditional Value-at-Risk on probability density func-

tion of asset returns

VaR. Unlike VaR, CVaR does quantify those losses that might occur in the tail of the

distribution. CVaR is the expected loss given the loss is greater that or equal to VaR (see

definition of CVaR) [6].

In order to be fair, it is necessary to provide examples of disadvantages of CVaR. It has

implementation problems because CVaR is very sensitive to estimation error of the market

observations (more sensitive than VaR, for example) and approximation error (this issue

is unique to every scenario optimisation problem and does not exist in the MV approach).

Also CVaR accuracy depends on accuracy of tail modeling. For more discussion about

disadvantages of CVaR see [87] and [80].

The more significant issue is conceptional problems of CVaR, for instance, the fact that

CVaR cannot integrate into the way investors consider risks. The reason is that CVaR

averages both small and extremely large losses, hence it gives them the same weight in

terms of the risk calculation, therefore it does not account for increasing risk aversion

against extreme losses [70].

CVaR is used in return-risk analyses similar to Markowitz’s (1952) mean-variance ap-

proach. For instance, it is easy to calculate a portfolio with a specified level of return

and minimal CVaR or to impose a constraint on CVaR and find a portfolio with maximal

expected return. In addition, we can impose several constraints on CVaR simultaneously
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with specifying different confidence levels (shaping the loss distribution by this). Hence,

it represents a flexible and useful risk management tool [79].

One of the most important properties of CVaR in terms of applications is that CVaR can

be expressed by a convenient minimisation (or maximisation) formula. This formula can

be incorporated into optimisation problems with respect to x ∈ X which are minimising

risk or shaping it within bounds. Convexity is preserved in this case. If the random

variables, under consideration, are discrete, the number of outcomes is finite, which can

be represented as various outcomes under various scenarios, then CVaR optimisation is

represented as a linear programming model of finite dimension [66].

2.4.1 Mean-CVaR model

Let r(x) be a random variable that depends on a decision vector

x = (ω1, ω2, · · · , ωN) ∈ A, where A is a feasible set of portfolios, r(x) = ω1r1+ . . .+ωNrN .

Consider a function [66]:

Fα(x, v) =
1

α
E{[−r(x) + v]+} − v, (2.51)

where α ∈ (0, 1), [u]+ =

⎧⎨
⎩ u, if u ≥ 0,

0, if u < 0.

Let us note that:

1. Function Fα defined in (2.51) is finite, continuous and convex with respect to v and

CVaRα(r(x)) = min
v∈R

Fα(x, v). We also would like to mention that the set Aα(x) (set

of all the values of v such that the minimum is achieved) is a non-empty, compact

(closed and bounded) and could possibly consist of one point.

2. Minimising CVaRα with respect to x ∈ A is equivalent to minimising Fα with respect

to (x, v) ∈ A× R, i.e.:

min
x∈A

CVaRα(r(x)) = min
(x,v)∈A×R

Fα(x, v). (2.52)
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It is important to note here, that a pair (x∗, v∗) minimises the right hand side of

(2.52) if and only if x∗ minimises its left hand side, v∗ ∈ Aα(x
∗).

3. CVaRα(r(x)) is convex with respect to x as well as Fα(x, v) is convex with respect

to (x, v).

Let r(x) be a discrete random variable with S possible outcomes (scenarios) r1(x), . . . , rS(x)

with probabilities p1, . . . , pS respectively. In this the case we let the reference point r0 = 0

and rewrite formula (2.51) as:

Fα(x, v) =
1

α

S∑
s=1

ps[v − rs(x)]
+ − v =

1

α

S∑
s=1

ps

[
v −

N∑
i=1

ωiris

]+

− v. (2.53)

Hence, we can formulate the mean-CVaR model for the portfolio selection problem [68]:

minimise CVaR(x) =
1

α

S∑
s=1

ps ys − v, (2.54)

subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.55)

N∑
i=1

ωi = 1, (2.56)

ωi ≥ 0, i = 1, . . . , N, (2.57)

v −

N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.58)

ys ≥ 0, s = 1, . . . , S, (2.59)

where v is the VaR and ys is the amount beyond VaR for scenario s.

2.4.2 Mean-variance-CVaR model

Modern approaches to the portfolio selection problem often lead to the creation of new

mathematical models which take into account several risk measures simultaneously (see,
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for example [46], [47], [84], [36]). In this section we give a formulation for the portfolio se-

lection problem in which random variables are described by three statistics [68]: expected

value E(r(x)), variance σ2(r(x)) and the CVaR at a specified confidence level α ∈ (0, 1).

The mean-variance-CVaR model gives an optimal solution as a tradeoff between the mean

variance efficient frontier and the mean-CVaR efficient frontier.

Let us define a preference relation for random variables r(x) in terms of mean-variance-

CVaR model as follows. Consider the portfolio selection problem with random variables

r(x1) and r(x2) which are returns of portfolios x1 and x2 respectively, x1, x2 ∈ A. We say

that r(x1) � r(x2) (i.e. portfolio x1 is preferred to portfolio x2) if and only if E(r(x1)) ≥

E(r(x2)), σ2(r(x1)) ≤ σ2(r(x2)), CVaRα(r(x1)) ≤ CVaRα(r(x2)), where at least one

inequality must be strict [68].

Hence, the non-dominated (efficient) solutions of the mean-variance-CVaR model are the

Pareto efficient solutions of a multi-objective problem, where the expected value is max-

imised while the variance and the CVaR are minimised. Generally, the problem can be

written as follows:

maximise [E(r(x)), − σ2(r(x)), − CVaRα(r(x))] (2.60)

for x ∈ A [66].

Let us consider a portfolio selection problem with S scenarios and N assets. Using formula

(2.53) we formulate the mean-variance-CVaR model as:

minimise MVCVaR(x) =
N∑
i=1

N∑
j=1

σij ωi ωj, (2.61)

subject to constraints:

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.62)

N∑
i=1

ωi = 1, (2.63)

ωi ≥ 0, i = 1, . . . , N, (2.64)
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v −

N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.65)

1

α

S∑
s=1

ρs ys − v ≤ z, (2.66)

ys ≥ 0, s = 1, . . . , S, (2.67)

where v, (ω1, . . . , ωN), (y1, . . . , yS) are decision variables, z is a real number constraint on

CVaR level which lies between the zmin (the minimum possible level of CVaR) and zmax

(the maximum possible level of CVaR) [68].

2.4.3 Prospect theory model with CVaR constraint

Solution of the PT-CVaR model is a single-objective problem, where the expected prospect

theory utility function is maximised with desirable level of return and a given level of CVaR

on the return distribution.

Following the logic of Sections 2.3.1 the prospect theory model with limited CVaR is

formulated as follows:

maximise PTCVaR(x) =
S∑

s=1

πs vs(r(x)), (2.68)

subject to the constraints

r̄(x) =
N∑
i=1

r̄i ωi ≥ d, (2.69)

N∑
i=1

ωi = 1, (2.70)

ωi ≥ 0, i = 1, . . . , N, (2.71)

v −

N∑
i=1

ωiris ≤ ys, s = 1, . . . , S, (2.72)

1

α

S∑
s=1

ρs ys − v ≤ z, (2.73)

ys ≥ 0, s = 1, . . . , S. (2.74)
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Summary

In this chapter we consider 9 models which will be used for further testing and analysis.

These models take into account the investor’s preferences in different forms. Generally,

the following human behavioural preferences which is implemented in the models will be

studied:

1. tradeoff between risk and return;

2. loss aversion;

3. risk aversion;

4. level of diversification.

On the one hand, it is interesting to analyse the performance of rationally based and

behaviourally based optimal portfolios from the return and risk point of view, while on the

other hand, the solution approach to mathematically complicated portfolio optimisation

problems with nonlinear objective functions and constraints is significantly valuable.
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Chapter 3

Solution approach

In the previous chapter we considered four basic models: mean variance, index tracking,

prospect theory and cumulative prospect theory models. The mean variance problem is

convex and can be solved easily with a built-in solver using different software as well as

the index tracking problem which is simple to deal with using a standard solver such as

FortMP in AMPL. In contrast, the prospect theory and the cumulative prospect theory

models are non-convex. Hence, the solution approach becomes more challenging.

We also consider a cardinality constraint as a limit on the number of assets in the op-

timal portfolio. We suppose that the investor may prefer a certain amount of stocks in

their optimal portfolio instead of the entire set of assets available in the market. While,

the portfolio optimisation problem with a cardinality constraint takes into account the

investor’s behavioural preferences, it leads to a very challenging mathematical problem

from the solution approach point of view.

The mean variance and prospect theory portfolio optimisation problem with a limit on

the number of assets is a non-linear mixed-integer program [18], [86]. Generally there

are two approaches of formulation for solving the cardinality constrained mean variance

problem. The basic approach is to formulate it as classic Markowitz problem subject to

standard linking constraints on thresholds plus the cardinality constraint. In this case

different heuristic methods or standard simplex method which are suitable for non-linear

problems are applied [86].
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An alternative approach is to reformulate it directly as a bi-objective problem. This tech-

nique allows the investor to analyse the tradeoff between cardinality and mean-variance.

Such an approach determines the set of nondominated points of the bi-objective prob-

lems in which an objective is smooth and combines mean and variance in the form of

a quadratic function and the other is non-smooth. For the solution of the bi-objective

optimisation problem a derivative free optimisation algorithm was chosen [16].

In our research we use the first (basic) approach because of two reasons. The first issue

is the problem formulation. We need a unified form of problem formulations because

our comparative analysis involves more then one model. It is easier to implement a new

constraint to the standard problem instead of changing the objective function each time.

The second reason is the solution approach. Some of our models are very complex and

require specific algorithms. Heuristic approaches can deal with these types of problems

even when it is extended with new constraints.

For the MV and IT cardinality constrained models we use the standard solver CPLEX

(AMPL) which is developed to deal with integer, mixed-integer, linear programming and

quadratic problems, including problems with quadratic constraints possibly involving inte-

ger variables. For the behaviourally based models we have developed an approach specified

for non-convex objective function with complex behavioural component. We found that

a heuristic is an appropriate solution approach for our task.

3.1 Behaviourally based models

It is important to note that problems (2.20)–(2.23), (2.26)–(2.29) and (2.33)–(2.43) are

non convex and functions (2.20), (2.26) and (2.33) are non differentiable. In addition we

consider the cardinality constrained PT model which potentially makes the problem more

complex for solving. As long as it is very difficult to find an optimal solution for this type

of problem many researchers and traders use heuristics that are inexact methods to solve

this sort of portfolio optimisation problems.
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In our research we have used two heuristic solution approaches for the basic and cardinal-

ity constrained portfolio optimisation problems with behavioural component. The first is

based on the differential evolution algorithm and the second is a genetic algorithm. We

consider the traditional differential evolution algorithm and the differential evolution with

the smoothing non-convex objective function using spline interpolation. Also in the devel-

opment of paper [19], we suggest the genetic algorithm which is based on meta-heuristic

approaches [39], in order to find the “optimal” solution for the cardinality constrained

portfolio optimisation problem.

For the sake of simplicity in our calculations we define the prospect theory weighting

function as π(p) = p and use the original value function v(r) as proposed in [78]:

v (r) =

⎧⎨
⎩ (r − r0)

α, if r ≥ r0,

−λ (r0 − r)β, if r < r0.
(3.1)

3.1.1 Differential evolution

A recent addition to the class of evolutionary heuristics is a method of differential evolution

proposed by R. Storn and K. Price [75], [62]. In our research to solve the problem (2.33)–

(2.43) we use this algorithm which is based on the evolutionary principle. In this section,

we consider a differential evolution approach which aims to obtain an “optimal” solution

for the (cumulative) prospect theory problem.

Let N be the number of all available assets. We need to find an optimal value of a

uniformly distributed variable x = (ω1, ω2, . . . , ωN) ∈ DK ⊆ R
N , where DK is a set of

feasible objective function values, i.e. we are looking for the value of x ∈ DK , which

provides a solution for the problem (2.20) and (2.26). In order to find this optimal

value of x we need to maximise the expected value of PTcc(r(x)) (which is equivalent to

(C)PT(r(x)) if K = N) using the following steps.

1. Initialisation. We define the set

DK = {v ∈ D, such that exactly K components of vector v are positive}.
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Let P ∈ N. We generate an initial population vi = (ωi1, . . . , ωiN), ∀ i = 1, . . . , P 2 vi ∈ DK .

2. Mutation and Crossover. Choose vectors va, vb, vc randomly from the vectors

vl, l = 1, . . . , P 2, such that they do not coincide with vi and each other. Also pick a

random number R ∈ {1, . . . , N}. We construct the components of a new vector ṽi ∈ D as

follows. With probability CR and if R = j, j = 1, . . . , N for the jth component, vector

ṽij = vaj +(F + z1)(vbj − vcj + z2) and ṽij = vij otherwise. Here parameters F ∈ [0, 2] and

CR ∈ [0, 1] are called the differential weight and the crossover probability respectively and

should be chosen by the user; quantities z1 and z2 are either zero with a low probability

(e.g. 0.0001 and 0.0002, respectively), or are normally distributed random variables with

a mean of zero and a small standard deviation (for example 0.02). The parameters z1 and

z2 are optional for the differential evolution algorithm. They are used to add up some

“noise” to the calculation of the resulting vector and avoid getting into local extrema.

3. Selection. Using equation (2.33) we calculate the values PTcc(vi) and PTcc(ṽi) and

choose the maximum called max(vi) to proceed to the new population which is used in the

next generation until the stopping criteria (e.g. number of generations, precision, etc.) is

met.

4. Final Assessment. In the last generation g = G find the vector which v∗i =

{vi|max{PTcc(v1), . . . ,PTcc(vP 2)}, E(max PTcc(vi)) ≥ d} (d constraint check). The

vector v∗i then is our best solution [40].

3.1.2 Differential evolution with smoothing of the utility func-

tion using splines

In this thesis we implement spline interpolation for the prospect theory utility function

into our differential evolution approach in order to solve the prospect theory problem. We

simply smooth the original utility function and apply the differential evolution algorithm

to solve the problem.

Smoothing splines often apply for discrete or noisy data to provide smooth curves. We

obtain a practical, effective method for estimating the optimum amount of smoothing
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from the data. Derivatives can be estimated from the data by differentiating the resulting

(nearly) optimal smoothing spline [82].

Note that the function (2.20) is not differentiable at the point r = r0. This alternative

approach to the calculation of an efficient portfolio according to prospect theory, based

on the smoothing of the objective function was proposed in [24]. The idea is to use a

cubic spline instead of the value function (2.18) in a δ-neighbourhood of the point r = r0,

δ > 0. In other words, one can replace the value function (2.18) by its smoothed version:

vδ (r) =

⎧⎨
⎩ v(r), if r /∈ (r0 − δ, r0 + δ),

v(r), if r ∈ (r0 − δ, r0 + δ),
(3.2)

where v(r) = ar3 + br2 + cr + d. Since the values of functions v(r) and v(r) and their

derivatives should coincide at the endpoints of the δ-neighbourhood, i.e. at points r0 − δ

and r0 + δ, we can calculate the coefficients a, b, c, d, of the cubic polynomial v(r) from

the system of linear equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v(−δ + r0) = v(−δ + r0),

v
′(−δ + r0) = v′(−δ + r0),

v(δ + r0) = v(δ + r0),

v
′(δ + r0) = v′(δ + r0).

(3.3)

So, we can rewrite the formula (2.20) as:

PT(vδ(r(x))) → max
x∈D

. (3.4)

The function vδ(r) is smooth and differentiable at a point r = r0.

3.1.3 Genetic algorithm

A genetic algorithm is a searching mechanism which is based on evolutionary principles

of natural selection and genetics. The theoretical background of genetic algorithms was

developed by Holland [39]. It works with populations of solutions and uses the principles

of survival of the fittest. In genetic algorithms the variables of the solution are coded
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into chromosomes. To make a natural selection and get good solutions, chromosomes are

evaluated by a fitness-criterion. In the considered optimisation problems the measure of

fitness is usually connected with the objective function. For more information see [54],

[11], [1].

To maximise the objective function or utility function PTcc(x) given in formula (2.33)

using a genetic algorithm we need to make the following steps.

1. Initialisation. We define the set

DK = {x ∈ D, such that exactly K components of vector x are positive}.

Let P ∈ N. We generate an initial population xi = (ωi1, . . . , ωiN), ∀ i = 1, . . . , P 2 xi ∈ DK .

2. Selection. At each generation g = 1, . . . , G we calculate values

PTcc(x1), . . . ,PTcc(xP 2) and put them in decreasing order, i.e. we obtain a decreasing

sequence (
PTcc(xm1

) ≥ . . . ≥ PTcc(xm
P2
)
)
,

where set xm1
, . . . , xm

P2
is a permutation of the initial set x1, . . . , xP 2 . We fix the maxi-

mum value of the objective function max PTcc(xi). Only the first 2P elements move to

the new population without changes, i.e. xm1
, . . . , xm2P

. Denote this elements of a new

population y1, . . . , y2P .

3. Crossover and mutation. We randomly choose two vectors x̃j and x̂k in the set

{xm2P+1
, . . . , xm

P2
} and breed them to produce a “child”. In order to do this we construct

the l−th element (l = 1, . . . , N) of the new vectors ai = (ai1, . . . , aiN), i = 2P +1, . . . , P 2,

ai ∈ DK , from vectors x̃j and x̂k, ∀j, k = 2P +1, . . . , P 2, by choosing between x̃jl and x̂kl

following the rules:

• if x̃jl = ωj and x̂kl = ωk (i.e. the asset is in both parents portfolios), than the asset

in the child is as follows ail = χ · ωj + (1 − χ) · ωk, where χ is randomly generated

number in [0,1];

• if x̃jl = 0 and x̂kl = 0 (i.e. the asset is not in either parent portfolios), than ail = 0

(this asset is not in the child);
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• if x̃jl = ωj and x̂kl = 0 (i.e. the asset is in only one of the parent portfolios),

than with probability π ail = ωj (i.e. this asset is included in the portfolio with

probability π).

To introduce mutation we change each element of the constructed vector ai with a given

small probability ζ > 0 for the randomly generated number from [0,1]. Then we ensure

that the number of non-zero elements of the new vector is less than or equal to K and

normalise the elements of this vector. We also find the maximum of the vectors ai, x̃j, x̂k

and denote this as yi. This is the most fit vector and now move this to the new population.

Continue while the last yP 2 element of the new population matrix have been processed.

4. Assessment. We calculate the values PTcc(y1), . . . ,PTcc(yP 2) and compare the max-

imum values of the obtained objective function max PTcc(yi) to max PTcc(xi). The new

population proceeds to the new generation (if g < G) if and only if max PTcc(yi) ≥

max PTcc(xi).

5. Final Assessment. In the last generation g = G find the vector y∗i = {yi|max{PTcc(y1), . . . ,PTcc(yP

d} (d constraint check). The vector y∗i then is the best solution.

The implementation of both algorithms: the differential algorithm and the genetic al-

gorithm, basic and with the extension constraints and modification, are presented in

Appendix A.

3.2 Models with the CVaR constraint

It is well known that CVaR is an efficient measure of risk in modern finance [79], [6],

[66]. We discussed its advantages in Chapter 2. In this section the solution approach to

the basic models such as mean variance and prospect theory with a CVaR constraint are

presented.

Unlike the single-objective mean variance and (cumulative) prospect theory models con-

sidered in section 2.4.2 the mean-variance-CVaR model is multi-objective, because one

needs to minimise two objectives, namely variance and CVaR, subject to a desirable
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mean return. In order to simplify the calculations we transform it into a single-objective

problem following the logic of the Pareto efficiency [35], [74]. As a result, we formulate

problem (2.61)–(2.67), where for a desired level of portfolio return (like in the mean vari-

ance model) we minimise only variance, but with additional constraints on CVaR (see

section 2.4.2 for details).

It is known that (see, e.g. [68]) the value x∗ is a Pareto optimal solution of the problem

(2.60) if and only if x∗ is an optimal solution of the problem (2.61)–(2.67) with z =

CVaRα(x
∗) and d = E(x∗) if the covariance matrix is positive definite. Note, that the

positive definiteness of the covariance matrix ensures strict convexity of the objective

function (variance) and, hence, guarantees the uniqueness of the optimal solution.

We deal with the mean-variance-CVaR model by doing the following steps.

1. Calculate minCVaR.

We find the minimum value of CVaR for the specified data sample without constrain-

ing the mean portfolio return. The output is an optimal objective value denoted as

minCVaR.

2. Calculate dminCVaR.

The maximum expected return (mean) acceptable for the CVaR-minimised portfolio

(i. e. portfolio with CVaR = minCVaR calculated in the previous step) can be

derived by solving the problem of maximising the mean portfolio return subject to

CVaR lower limit equal to minCVaR. Obtained value of maximum mean is denoted

by dminCVaR.

3. Calculate dminvar.

We calculate the maximum value of expected return that is obtained by solving the

classical Markowitz optimisation problem (with no constraint on expected return),

i. e. minimising variance, and denote it as dminvar.

4. Calculate [dmin, dmax] and choose d∗.

Choose dmin as the maximum of dminvar and dminCVaR.

dmax = max(r̄(x)) is the maximum possible expected return that can be found as

the optimal objective value in the problem of maximising portfolio’s expected return
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without additional constraints, except compulsory constraint on asset weights sum

in the portfolio,
N∑
i=1

ωi = 1.

Choose d∗ ∈ [dmin, dmax].

5. Calculate [zmin, zmax] and choose z∗.

We solve the optimisation problem minCVaR subject to portfolio return level d∗

and denote the result as zmin.

We minimise variance subject to portfolio return level d∗ and define the optimal

solution as x∗. Then we calculate the CVaR for the found portfolio x∗ and denote

the result as zmax.

Choose z∗ ∈ [zmin, zmax].

6. Solution of the problem.

Solve the problem (2.61)–(2.67) subject to the obtained portfolio mean return value

d∗ and chosen value of CVaR z∗.

We implement a CVaR constraint into the prospect theory model in order to analyse

the performance and to compare the results with the mean-variance-CVaR model. The

problem (2.68)–(2.74) can be solved using heuristic approaches developed in Section 3.1.
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Chapter 4

Computational results

4.1 Empirical study

4.1.1 Data

We have solved the portfolio optimisation problems using publicly available data relat-

ing to five major market indices, available from the OR-Library [10]. The five market

indices are the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P 100

(USA) and the Nikkei 225 (Japan) for 290 time periods each (weekly data), taken from:

http://people.brunel.ac.uk/m̃astjjb/jeb/orlib/portinfo.

html. All of these problems were considered previously by Chang et al. (2000) (see [18])

and Woodside-Oriakhi at al. (see [86]). The size of these five test problems ranged from

N = 31 (Hang Seng) to N = 225 (Nikkei 225) and are presented in Table 4.1.

Data set Number of stocks N Number of time periods S
1 Hang Seng 31 290
2 DAX 100 85 290
3 FTSE 100 89 290
4 S&P 100 98 290
5 Nikkei 225 225 290

Table 4.1: Test problem dimension
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The data used in this thesis is given in the form of matrices of asset prices. We transformed

the original data sets into matrices of asset returns. It is widely accepted to use logarithm

of the price ratio in order to derive the rate of returns, instead of using absolute asset

price relations [55]. In our research the rate of return r is calculated using the prices p for

each time period s as follows:

ri = ln

(
pis
pis−1

)
, i = 1, . . . , N, s = 1, . . . , S,

where N is the number of assets and S is the total number of time periods.

The in-sample computational results reported in this research are obtained using the first

100 time periods of the data sets described above. The remaining time periods (190) are

used in bootstrap out-of-sample tests.

In this research we apply simulation of the data with a particular type of distribution

as an out-of-sample test data for our models. We are interested in so called “bullish”

market dynamics which indicates the investor’s confidence that the positive trend of the

prices will continue. It also characterises increasing investments and high activity of

exchange trades which follows from a stable economic situation. In contrast a “bearish”

market demonstrates pessimistic expectations which leads to stagnation and long-term

decreasing of the prices. In order to investigate the performance of the models in different

conditions we simulate these two trends in the matrix of the asset returns.

The out-of-sample data set which simulates bullish and bearish markets were obtained

using the built in functions available in the Statistics Toolbox in Matlab. For bullish mar-

ket simulations we apply the function datasample. This function y = datasample(data, k)

returns k observations sampled uniformly at random, with replacement, from the specific

data set in data. In order to obtain the data set which possesses properties of a bullish

market we simulate the returns based on historical data of market growth (data form

4.01.2005 to 30.12.2005; 252 time periods in total).

Bearish market simulations are made using the command mvtrnd. The statement r =

mvtrnd(kR, df, cases) returns a matrix of random numbers chosen from the multivariate

t-distribution, where kR is matrix of historical returns from the crisis period, df is the
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degrees of freedom (in our computational study df = 5) and it is either a scalar (like

we use in this research) or could be a vector with cases elements (case is the number

of lines, equal to 100 for these tests). We chose a t-distribution because the tails of a

Student t-distribution tend to zero slower than the tails of the normal distribution which

reflects more the real market situation. For the simulations of bearish market we used

historical data related to the FTSE 100 index of the global crisis period in 2008 available

in Bloomberg Database (data from 1.01.2008 to 31.12.2008; 261 time periods in total) as

an initial matrix for simulation. So we apply both, crisis historical data as a sample of

data and a t-distribution simulation in order to underline the contrast in two different

types of return distributions, bullish and bearish.

The mean variance and the index tracking models (basic formulation and with addi-

tional constraints) were solved using AMPL software with CPLEX (version 12.5.1.0) as

a software package for solving large-scale optimisation problems. The prospect theory

and cumulative prospect theory portfolio selection problems (basic formulation and with

additional constraints) were implemented using Matlab software, as well as built-in and

specially developed functions. All simulations and bootstraping were run in Matlab. The

system runs under MS Windows 7 64-bit SP 1 and in our computational work we used

an Intel Core i3-2310M pc with a 2.10 GHz processor and 8.0 GB RAM.

4.1.2 Parameters of the models

Hereinafter, we consider the prospect theory and the cumulative prospect theory models as

a class of behaviourally based models for the sake of convenience because their properties

investigated in the analysis are similar. For these models (also with additional constraints

and index tracking) we use constant values of the parameters λ = 2.25, α = β = 0.88 as

proposed by Tversky and Kahneman in their paper [78]. For equations (??) and (??) we

put δ = 0.61, γ = 0.69 in accordance with [78].

Tversky and Kahneman consider cumulative prospect theory as a complex choice model.

Estimation of such types of problems is very difficult because of the large number of

parameters. In order to reduce this number they “focused on the qualitative properties
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of the data rather than on parameter estimates and measures of fit” [78] by using a

nonlinear regression procedure for estimation of the parameters of equation (2.18), they

found that “the median exponent of the value function was 0.88 for both gains and losses,

in accordance with diminishing sensitivity” and “the median λ was 2.25 . . . and the median

values of δ and γ, respectively, were 0.61 and 0.69”[78].

In order to compare the performance of different models we used the same level of desired

portfolio return d for basic and cardinality constrained models only. For each data set the

parameter d = max r̄ − (max r̄ −min r̄) · 0.25, where max r̄ and min r̄ are maximum and

minimum mean of assets returns for the specific data set. It should be mentioned that as

one can see this level was chosen to be high enough to consider this condition as extreme

for the proposed models. Taking into account the character of the prospect theory model

which chooses more aggressive portfolios with high level of returns the choice of a high d is

justified (see the discussion of the results in Section 4.2). For some sets of data (especially

for big data sets) we have to adjust the parameter d (reduce the value of d) in order to

provide the feasibility of the optimal portfolio for behaviourally based models.

The values of the parameter d can be seen in Table 4.2 which also includes the reference

point and the bank interest rate. It should be noted, that the reference point in Table

4.2 is used for the behaviourally based models, basic and with other additional constraint

except index tracking. These values for the reference point reflect average interest rate

(IR) for different market economies (depends on corresponding market index of used data

set). Following the definition of the prospect theory value function parameter r0 is set

for each time period and in the case of basic models (with and without cardinality and

CVaR constraints) is constant. In contrast, for the index tracking problem it is dynamic

and changes for each time period depending on the index value.

We used K as a parameter for cardinality constrained models (basic models MV and PT).

In order to distinguish the index tracking problem from the other models let K∗ be a limit

on the number of assets for these index tracking problems. As diversification levels of the

basic models and the index tracking based models are different we use different values for

the parameters K and K∗. Cardinality constraint models according to its formulation
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have lower and upper limits on the asset weight. We use li = 0.01 and ui = 1 for these

limits.

Data set d IR r0 K K∗

Hang Seng 0.0118 0.005 0.00005 7 15
DAX 100 0.006 0.0025 0.000025 10 20
FTSE 100 0.0077 0.0025 0.000025 10 25
S&P 100 0.0109 0.005 0.00005 5 25
Nikkei 225 0.0005 0.0001 0.000001 3 25

Table 4.2: Tabulated values of model parameters

For models with a CVaR constraint it is necessary to define the feasible set of solutions

for parameter d∗ (expected return) and z∗ (CVaR constraint) for each data set as was

described in Section 3.2. Testing MV and PT models with a CVaR constraint we found

that the feasible set for the target return which was defined for MV is also suitable for the

PT model. However, parameter z has different feasible sets for these two problems, so, it

is impossible to define the same z∗ for them. Complexity and particular properties as well

as behaviour of the prospect theory objective function compared to the mean variance

problem lead to different feasible sets for the solution for these two models.

Thus, we define zmin and zmax for the prospect theory separately as the real minimum and

maximum value of CVaR for the prospect theory model without a constraint on CVaR

based on G observations (in each generation). In Table 4.3 boundaries of feasible sets for

parameter z and chosen z∗ for the MV model as well as boundaries for the parameter d

(which are dmin and dmax) and d∗ for both, MV and PT with CVaR constraint models

(due to the similarity) are presented. The boundaries of feasible sets of solutions with

parameter z and chosen value for z∗ for PT model with CVaR constraint are shown in

Table 4.4.

We calculate CVaR for considered models with confidence level α = 95% in this research.

4.1.3 Parameters of the heuristic approaches

Previously we note that both, prospect theory and cumulative prospect theory models,

are mathematically complex problems and therefore they are difficult to deal with. In
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Data set dmin dmax d∗ zmin zmax z∗

Hang Seng 0.0081 0.0153 0.011 0.0472 0.0570 0.056
DAX 100 0.0034 0.01008 0.007 0.0124 0.0191 0.019
FTSE 100 0.0054 0.0119 0.007 0.0102 0.0149 0.014
S&P 100 0.0030 0.0169 0.006 0.0082 0.0145 0.014
Nikkei 225 0.0018 0.0056 0.002 0.0287 0.0364 0.036

Table 4.3: Tabulated values of parameters d∗ and z∗ for MV model with CVaR con-

straint

Data set zmin zmax z∗

Hang Seng 0.0631 0.0754 0.0727
DAX 100 0.0233 0.0273 0.0268
FTSE 100 0.0242 0.0378 0.025
S&P 100 0.0218 0.041 0.038
Nikkei 225 0.0392 0.0542 0.0487

Table 4.4: Tabulated values of parameter z∗ for PT model with CVaR constraint

Section 3.1 we proposed different solution approaches to these models. In order to obtain

an “optimal” solution for the behaviourally based models we use differential evolution,

differential evolution with spline interpolation and a genetic algorithm.

It is known that the parameters of heuristics and metaheuristic algorithms have a great

influence on the effectiveness and efficiency of these algorithms (see for example [3]). It

is important to find correct parameter settings for each problem and data set. To obtain

the best solution for the problems we illustrate this here with the algorithms using the

first data set (Hang Seng) trying to choose the most appropriate value for each parameter

and analyse the effectiveness of each algorithm in order to define the best for our research.

The analysis and selection of the parameters for the chosen algorithm for the other sets

of data are presented in Appendix B.

Our choice of parameter is based on three comparison criteria: computational time, utility

as the value of the objective function PT(x) and range of PT(x) as a difference ξ =

maxPT(x) − minPT(x). In order to study the stability of the algorithm we test each

combination of parameters 10 times and compare mean CPU time, mean utility and ξ in

the form of the difference maxPT(x)−minPT(x).
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The optimal solution of the prospect theory problem is typically unknown and we have

no benchmark for comparative analysis. So we define the optimal solution to be the best

in the set of solutions we have obtained in our tests. In this section we also consider the

performance of different approaches to the prospect theory problem in order to define the

best in terms of several indicators described above.

Much research has been devoted to using heuristic approaches as an effective tool for

dealing with non-convex problems. Maringer in 2008 presented a comparative analysis

of quadratic, power and the prospect theory utility function performance with different

levels of loss aversion [48]. He used a differential evolution approach in order to get a

solution for the prospect theory model. The paper focused more on performance of the

models and parameters of the optimal portfolio return distribution but not on the solution

approach itself.

To the best of our knowledge there are no studies where the differential evolution with

spline interpolation and a genetic algorithm have been applied to the prospect theory

problem. From the mathematical point of view it is interesting to investigate the per-

formance of different solution approaches applied to problem (2.33)–(2.43) which is non

convex and function (2.33) which is non differentiable.

Differential evolution algorithm

The differential evolution algorithm efficiency depends on parameters such as the differ-

ential weight F , the crossover probability CR, the population size P and the number

of generations G. It is necessary to start with the F parameter because the differential

weight is the key parameter for the differential evolution algorithm. As we noticed this

value significantly influences the mean value of the objective function and its dispersion.

It is known that F ∈ [0, 2] (see Section 3.1.1), however, in our case a value larger than 1

gives us a very unstable solution. Thus, we define the following values to test: 0.05, 0.15,

0.5 and 0.95. In the calculations in Table 4.5 for our specific function, the smaller the

value of the differential weight the higher the value of objective function (utility) and the

smaller the range of the solution (ξ = 0 leads to the best quality of the solution). The

value 0.05 gives us the best results according to all three criteria.
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It should be mentioned that in choosing parameter F = 0.05 we set CR = 0.5, P = 20 and

G = 100. This choice is based on preliminary analysis and recommendations available in

the literature [62], [29]. Hereinafter while testing each parameter one by one we fix the

values of other parameters (F = 0.05, CR = 0.5, P = 20 and G = 100) in order to show

the difference in the results.

The next step is to choose the optimal value for the crossover probability. It is known that

the CR ∈ [0, 1] (see Section 3.1.1). We analyse three values for CR = 0.3, 0.5, 0.8. The

results in Table 4.5 confirms that CR = 0.5 provides an acceptable CPU time (better than

CR = 0.8) and a stable utility (better than CR = 0.3) which leads to a stable solution.

The parameters F and CR should be chosen for the specific objective function and features

of the problem. In contrast, the values of G and P primarily depend on the size of the

problem. For example, for a data set with 32 assets (including the index as an asset) we

define values for G and P , so, for larger scale problems we use values in proportion to the

best we find here. We consider the values of these parameters as a function of problem

size. We now explain the choice of these parameters only for the smallest data set Hang

Seng.

We test values P = 15, 20, 25 in order to define suitable parameters in terms of CPU

time and optimality of the solution. As one can see in Table 4.5 the population size

of 20 provides the best utility (quantitatively and in terms of stability) with reasonable

computational time. The value P = 25 requires more time (+35.6 seconds) compared to

P = 20, providing the same utility while a smaller population size leads to an unstable

solution.

Within the DE algorithm we need to decide which number of generations is the best for

this problem size. We define three points to test which are G = 70, 100, 130 in order to

find a balance between solution quality and computational time. We choose 100 because

it provides maximum utility with range 0 in an acceptable CPU time as shown in Table

4.5.

Differential evolution algorithm with spline interpolation
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Parameter Parameter value CPU time PT (x) ξ
F 0.05 61.8 0.6237 0

0.15 64.4 0.6235 0.0003
0.5 66 0.62084 0.0013
0.95 69.2 0.56534 0.0269

CR 0.3 61.6 0.62356 0.0002
0.5 61.8 0.6237 0
0.8 65.4 0.6237 0

P 15 35.2 0.62302 0.0031
20 61.8 0.6237 0
25 97.4 0.6237 0

G 70 43.2 0.62342 0.0005
100 61.8 0.6237 0
130 80.6 0.6237 0

Table 4.5: Differential evolution parameter comparison (Hang Seng data set)

Due to the fact that the principles of the DE with spline interpolation algorithm is identical

to that of the DE, the results of testing provide the same trend. We only changed the

value of the differential weight F = 0.1 because it gives better CPU time. One can find

the results of testing in Table 4.6. Finally, the chosen parameters for the DE with spline

interpolation algorithm applied to the PT model are F = 0.1, CR = 0.5, P = 20 and

G = 100.

Parameter Parameter value CPU time PT (x) ξ
F 0.1 63.5 0.6237 0

0.15 65.4 0.6235 0.0005
0.5 67 0.62084 0.0017
0.95 69.2 0.56534 0.036

CR 0.3 62.7 0.6134 0.0024
0.5 63.5 0.6237 0
0.8 67.3 0.6237 0

P 15 41.6 0.62302 0.0043
20 63.5 0.6237 0
25 103.8 0.6237 0

G 70 43.2 0.62342 0.0005
100 63.5 0.6237 0
130 85.7 0.6237 0

Table 4.6: Differential evolution with spline interpolation parameter comparison

(Hang Seng data set)

Genetic algorithm
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There are three main parameters in the genetic algorithm: the mutation probability z,

the population size P and the number of generations G. These parameters are the most

influencing on the outcome of the algorithm.

As shown in Table 4.7 we tested different values for each of these parameters in order to

find the optimal settings. In the analysis we used constant parameters z = 0.5, P = 15

and G = 70 for the Hang Seng (Hong Kong) data set while testing each parameter in

order to show the difference in the results. This choice is based on preliminary analysis

and recommendations available in the literature.

First of all the mutation probability should be chosen. We took several different values

for the parameter z. As one can see in Table 4.7 the CPU time does not change much

and does not depend on the value of this parameter. It is obvious that z = 0.5 gives us a

necessary and sufficient mutation component to obtain the best stability of the solution.

The values larger (z = 0.7) or smaller (z = 0.3) provide the solution with lower level of

stability. In addition, the value of the objective function in this case is not the best as

well.

Population size is a very important parameter for any heuristic algorithm. One should

find the right value of P for the specific problem. There are many recommendations

in the literature which can help to choose suitable parameters for the genetic algorithm

(see for example [32]) according to the specific objective function. Most of the guides

suggest to use the number of variables and multiply it by 10 for such complex objective

functions such as prospect theory. At the same time for the portfolio optimisation problem

the recommended population size is around 100-200 [4]. In our case there are 32 assets

(including the index as an asset) in a data set and we found testing the model that

reasonable interval for the search is [10, 20] for such a small matrix. Taking into account

that in our algorithm we use population size P 2 we obtained an interval [100, 400] which

covers the first recommendation (32 · 10 = 320) and the second one ([100,200]).

The population size greatly affects the CPU time. Again we are searching for a balance

between computational time and stability because the quality is not improving much with

an increasing value of P . However, the solution becomes more volatile once you decrease

the population size (see results for P = 10 in the Table 4.7). We define P = 15 as the
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best for our experiments because it gives optimal utility and saves computational time

compared to P = 20. Also P = 15 provides a good search space for exploration.

We study the interval [40,100] in order to define the optimal parameter value for the

number of generations. Previously, we tested extremely high values such as 300 and 400

and the quality of the solution did not change much versus the value of 100 but the CPU

time increases dramatically. One can see in Table 4.7 that the difference between the

results obtained using G = 70 and G = 100 is not much too, so, we can save time for

approximately the same range of the solution and the value of objective function while

decreasing the value of G results in a deteriation the solution.

As was mentioned previously, we consider values of P and G parameters as a function of

the problem size for the heuristic approaches and one should choose it proportionally to

the problem size. The values of G and P parameters for the genetic algorithm for different

sized problems can be found in Appendix B.

Parameter Parameter value CPU time PT (x) ξ
z 0.3 36.6 0.6219 0.0084

0.5 36.2 0.62354 0.0002
0.7 36.8 0.62352 0.0004

P 10 15.6 0.60916 0.0713
15 36.2 0.62354 0.0002
20 67.4 0.62361 0.0002

G 40 25.6 0.6235 0.0034
70 36.2 0.62354 0.0002
100 47.2 0.62358 0.0001

Table 4.7: Genetic algorithm parameter comparison (Hang Seng data set)

It is important to note that all three different algorithms give us the same value of the

objective function. This fact verifies the solution obtained with the proposed solution

approaches and confirms the accuracy of the implementation of the prospect theory model

into heuristic approaches.

We notice that the value of criterion ξ for the genetic algorithm is slightly worse than

the results achieved when testing the differential evolution algorithm. At the same time

the CPU time of the GA is much less which gives a benefit compared to the DE. This
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benefit defines the choice of this solution approach for further computational study for

this research.

4.2 Comparative analysis of the performance of the

models

4.2.1 Connection to previous research

We would like to distinguish two empirical studies in the literature which contributes to

the development and application of the behaviourally based models.

Maringer [48] studied PT investor’s risk aversion and loss aversion using higher order

moments such as skewness and kurtosis. He found and proved empirically that “higher

level of risk aversion might lead to an investment with more, not less volatility” [48].

It can be explained by sensitiveness towards increasing positive skewness and decreasing

kurtosis. The more loss aversion increases, the more risk seeking appears and the more

aggressive the portfolio that is chosen when behavioural investors face losses.

The preferences of some assets under the CPT assumptions in terms of specific charac-

teristics of the assets was researched by Barberis and Huang in 2008 [8]. They found that

positively skewed securities are more preferable in the CPT optimal portfolios in com-

parison with the MV model. They proposed that this fact is the effect of the probability

weighting function [8]. The same result was obtained by Bernard and Ghossoub in 2010

[13].

4.2.2 Comparative analysis of the basic models

The summary of the mean variance, prospect theory and cumulative prospect theory basic

models performance in-sample is displayed in Table 4.8. This table shows the ratio r̄/σ,

mean portfolio r̄, standard deviation σ, VaR and CVaR as well as the number of assets
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n in the optimal portfolio and CPU time in seconds (CPU) which is significant for the

heuristic approaches.

As was mentioned before (in Section 2.4) the VaR and the CVaR are often used together

and the application of this combination of two risk measures can be beneficial to the risk

estimation for non-symmetric loss distributions which are characteristics for real market

conditions.

Obviously, computational time for the heuristic approach used for behaviourally based

models is much higher than for quadratic linear programming which is applied for the

mean variance model. Computational complexity of cumulative prospect theory makes it

even worse. The CPU time is triple that for the prospect theory.

Usually the quality of the heuristic approach for smaller problems can be measured in

deviation of the heuristic solution from the optimal solution [86]. However, the efficient

frontier for prospect theory portfolio optimisation problem is unknown. As can be noticed

in Table 4.8 it is very difficult to compare the portfolios average return and risk using

different models because the PT model‘s behaviour is more aggressive in terms of mean

return and respectively gets higher risk. In this case we suggest to use the ratio r̄/σ as a

unified measure of performance of the portfolio which includes the mean portfolio and a

risk measure. The larger the value of r̄/σ the more efficient the portfolio.

We proposed previously that the mean variance model will be used as a benchmark in

this research. It is justified by the fact that the mean variance model provides the optimal

solution in terms of return and variance. One can see that in each data set the ratio r̄/σ

of the MV model is the best among the others. Only in the Nikkei 225 data set the PT

model did achieve a higher ratio because it found the best portfolio with an extremely

high mean return and it is hard to compare the results in this case. If we set this high

level of portfolio mean return as d in the constraint for expected return for the mean

variance model the ratio r̄/σ is higher than achieved for the prospect theory model due

to the smaller σ.

As was mentioned previously we treat the index as a normal asset and allow it to be

chosen as an asset in an optimal portfolio in order to check its attractiveness for the
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investigated models. We suppose that the index should be an efficient asset. According

to our experiments only cumulative prospect theory chooses the index in two data sets

out of five. In spite of the poor results in most of the parameters, CPT shows a better

CVaR value compared to the PT model. This model shows mostly conservative investment

behaviour according to the risk measure σ and CVaR when compared to the PT model.

It is easy to see that according to the in-sample computational results the prospect theory

model achieved higher mean portfolio return in each data set (especially in the Nikkei 225

data set) than MV and CPT models. In spite of this PT and CPT model got mostly the

best value of the VaR parameter which indicates good downside protection and agrees

with the theoretical concept of BPT. However, PT and CPT models demonstrate less

diversification of their portfolios in comparison with the mean variance model.

Data set Model CPU n r̄/σ r̄ σ VaR CVaR

Hang Seng MV 0.015 9 0.3926 0.0118 0.0301 -0.0373 -0.0644

d=0.0118 PT 36.2 8 0.3922 0.0131 0.0335 -0.0371 -0.0727

CPT 104 5 0.3616 0.0130 0.0359 -0.0500 -0.0668

DAX 100 MV 0.031 16 0.4683 0.0060 0.0128 -0.0141 -0.0197

d=0.006 PT 550 12 0.4529 0.0083 0.0183 -0.0145 -0.0248

CPT 1790 7 0.4369 0.0080 0.0183 -0.0144 -0.0206

FTSE 100 MV 0.031 14 0.5636 0.0077 0.0137 -0.0121 -0.0178

d=0.0077 PT 630 17 0.4797 0.0090 0.0188 -0.0114 -0.0272

CPT 1904 22 0.4933 0.0085 0.0171 -0.0153 -0.0163

S&P 100 MV 0.046 11 0.5115 0.0109 0.0213 -0.0279 -0.0328

d=0.0109 PT 721 6 0.4940 0.0109 0.0221 -0.0267 -0.0391

CPT 1994 7 0.4717 0.0105 0.0222 -0.0265 -0.0265

Nikkei 225 MV 0.14 13 0.0159 0.0005 0.0196 -0.0349 -0.0395

d=0.0005 PT 1179 4 0.1434 0.0034 0.0238 -0.0338 -0.0384

CPT 4862 4 0.1598 0.0039 0.0246 -0.0325 -0.0326

Table 4.8: Comparative analysis of basic models (in-sample). Summary

In summary, the main findings are:

• The PT model, mostly, is more aggressive than MV and CPT because it chooses

portfolios with higher level of returns. Probably, the reference point forces this

model to focus more on the assets with high returns. In spite of the similarity of the

PT and CPT models the cumulative prospect theory is not so aggressive because of

the probability weight function which prevents the appearance of high risk in the

optimal portfolio.
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• The PT model is more efficient than CPT according to the r̄/σ indicator in the

main.

• Behaviourally based models are more beneficial in terms of VaR in comparison with

the MV in most of the data sets. This fact reflects the nature of the PT model

which focuses on downside protection.

• Behaviourally based models provide portfolios which are normally less diversified

than the mean variance model.

• The index as an asset, generally, was not attractive for all the three models in our

data sets. In a volatile market, the index returns are not attractive as an investment

for portfolio selection models giving less benefits than ordinary assets.

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.6844 0.0014 0.0020 -0.0018 -0.0028

PT 0.5388 0.0012 0.0021 -0.0023 -0.0031
CPT 0.4260 0.0009 0.0021 -0.0026 -0.0035

DAX 100 MV 1.9785 0.0024 0.0012 0.0004 -0.0001
PT 1.7766 0.0024 0.0013 0.0005 -0.0005
CPT 2.4833 0.0033 0.0013 0.0012 0.0006

FTSE 100 MV 1.1103 0.0016 0.0014 -0.0008 -0.0014
PT 1.6570 0.0023 0.0014 0.0000 -0.0006
CPT 1.8717 0.0024 0.0013 0.0002 -0.0003

S&P 100 MV 0.7232 0.0013 0.0019 -0.0017 -0.0024
PT 0.8441 0.0016 0.0019 -0.0015 -0.0023
CPT 0.9175 0.0017 0.0019 -0.0012 -0.0021

Nikkei 225 MV 0.3317 0.0005 0.0016 -0.0021 -0.0029
PT 0.9804 0.0019 0.0020 -0.0014 -0.0022
CPT 0.9960 0.0019 0.0020 -0.0013 -0.0022

Table 4.9: Comparative analysis of basic models (out-of-sample: bootstrap). Sum-

mary

We now investigate the performance and behaviour of the models for out-of-sample tests.

We applied bootstraping, using the data sets with the time periods from 101 to 290. We

randomly choose observations from the specified range to obtain out-of-sample data set.

We repeat this iteration 1000 times and statistically obtain portfolio characteristics in the

form of mean return, risk, VaR and CVaR. We would like to draw the riders attention

that here and further on values of VaR and CVaR are calculated with respect to return
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 22.3694 0.0795 0.0036 0.0736 0.0722

PT 19.5623 0.0792 0.0040 0.0727 0.0724
CPT 15.0646 0.0794 0.0053 0.0705 0.0686

DAX 100 MV 31.5966 0.1582 0.0050 0.1501 0.1478
PT 22.6324 0.1583 0.0070 0.1471 0.1443
CPT 21.0312 0.1584 0.0075 0.1458 0.1430

FTSE 100 MV 22.9827 0.1189 0.0052 0.1106 0.1084
PT 27.4194 0.1187 0.0043 0.1115 0.1099
CPT 30.1336 0.1188 0.0039 0.1120 0.1103

S&P 100 MV 23.7931 0.0986 0.0041 0.0918 0.0901
PT 22.1445 0.0991 0.0045 0.0917 0.0894
CPT 24.0876 0.0991 0.0041 0.0924 0.0904

Nikkei 225 MV 26.3628 0.1385 0.0053 0.1263 0.1236
PT 18.3664 0.1388 0.0076 0.1301 0.1272
CPT 17.5419 0.1382 0.0079 0.1248 0.1217

Table 4.10: Comparative analysis of basic models (out-of-sample: simulation of bullish

market). Summary

(instead of loss). It means that starting from Table 4.9 the higher the values or these risk

measures the better.

As shown in Table 4.9, behaviourally based models maintain the leading position in terms

of portfolio returns in most of the data sets while the MV is better in the risk parameter σ.

In looking at the ratio r̄/σ, one can notice that the cumulative prospect theory is better

compared to the other models. Also this model shows better performance according to

the VaR and CVaR parameters.

To investigate further, we extended our out-of-sample tests to look at the models perfor-

mance for both bullish and bearish market data. In out-of-sample simulation of bullish

market tests based on a distribution which is typical for increasing market in the period

of economic growth, the results are shown in Table 4.10.

According to Table 4.10, behaviourally based models, especially the PT model, shows best

results in terms of mean return of the portfolio as well as VaR and CVaR parameters. The

cumulative prospect theory model also shows better VaR and CVaR statistics compared

to MV. At the same time, the MV model is more beneficial from the risk parameter (σ)

point of view and also better in the ratio r̄/σ.
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.2580 0.0004 0.0015 -0.0022 -0.0026

PT 0.2187 0.0003 0.0016 -0.0022 -0.0030
CPT 0.2659 0.0004 0.0016 -0.0023 -0.0030

DAX 100 MV -0.1797 -0.0007 0.0036 -0.0067 -0.0081
PT -0.1460 -0.0006 0.0039 -0.0066 -0.0075
CPT -0.1912 -0.0008 0.0040 -0.0074 -0.0088

FTSE 100 MV -0.0235 -0.0001 0.0035 -0.0061 -0.0075
PT -0.1712 -0.0004 0.0026 -0.0047 -0.0057
CPT -0.0619 -0.0002 0.0031 -0.0052 -0.0064

S&P 100 MV -0.1088 -0.0003 0.0031 -0.0054 -0.0066
PT -0.0956 -0.0003 0.0030 -0.0054 -0.0065
CPT -0.2678 -0.0008 0.0032 -0.0060 -0.0074

Nikkei 225 MV -0.0658 -0.0002 0.0038 -0.0064 -0.0079
PT 0.0420 0.0002 0.0037 -0.0062 -0.0074
CPT -0.2317 -0.0009 0.0039 -0.0069 -0.0083

Table 4.11: Comparative analysis of basic models (out-of-sample: simulation of bear-

ish market). Summary

Our out-of-sample simulation of bearish market tests based on a distribution which is

typical for a decreasing market in the period of economic crisis. As one can see in Table

4.11, surprisingly, behaviourally based models, especially the PT model, look mostly

better in terms of VaR and CVaR but are worse in σ and the r̄/σ indicator in comparison

with the MV model. According to the ratio r̄/σ, VaR and CVaR parameters, the PT is

more beneficial than the CPT in the bearish market. Generally, the cumulative prospect

theory model demonstrates the worst results in these tests, especially in the ratio r̄/σ,

VaR and CVaR parameters. Also it is hard to say which model performed better in terms

of mean returns because the results for this parameter fluctuates between different models.

Tests on simulated bearish market data show the benefits of PT model in terms of VaR and

CVaR risk measures which are significantly important in decreasing market conditions. It

means that the behavioural component of PT model provides better downside protection

in critical market situations in comparison with the traditional mean variance approach.

The results for all tests with higher order moments values (skewness and kurtosis indica-

tors) can be found in Appendix C.
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4.2.3 Comparative analysis of the models with cardinality con-

straint

As was proposed previously we investigate the performance of a cardinality constrained

mean variance and prospect theory models in this section. In-sample results for these

models are presented in Table 4.12. We noticed that CPU time for cardinality constrained

prospect theory model is slightly less than for the basic version. The genetic algorithm

works faster in this case because the parameter K restricts the searching space. It is

interesting to see that the PT model does not reach the maximum of the allowed number

of assets in the portfolio in 3 sets while the MV model takes the opportunity to include

as many assets as is allowed.

Similar to in-sample results for the basic models the cardinality constrained MV model

showed better values of σ, the ratio r̄/σ and CVaR while the PT model was better in

mean portfolio return and VaR parameters. We can conclude that the behavior of the

prospect theory model does not change much with the additional cardinality constraint

and it demonstrates the aggressive portfolio choice.

Data set Model CPU K n r̄/σ r̄ σ VaR CVaR

Hang Seng MV 0.09 7 7 0.3919 0.0118 0.0301 -0.0363 -0.0643

d=0.0118 PT 37 7 6 0.3915 0.0132 0.0338 -0.0363 -0.0731

DAX 100 MV 0.25 10 10 0.4604 0.0060 0.0130 -0.0159 -0.0191

d=0.006 PT 520 10 8 0.4484 0.0080 0.0179 -0.0141 -0.0250

FTSE 100 MV 0.11 10 10 0.5631 0.0077 0.0137 -0.0122 -0.0180

d=0077 PT 600 10 8 0.5218 0.0096 0.0184 -0.0107 -0.0269

S&P 100 MV 0.14 5 5 0.4911 0.0109 0.0222 -0.0263 -0.0371

d=0.0109 PT 690 5 5 0.4729 0.0120 0.0253 -0.0255 -0.0413

Nikkei 225 MV 0.89 3 3 0.0023 0.0000 0.0209 -0.0381 -0.0439

d=0.0005 PT 1105 3 3 0.1420 0.0034 0.0239 -0.0327 -0.0369

Table 4.12: Comparative analysis of cardinality constrained models (in-sample). Sum-

mary

The performance of the models out-of-sample using the bootstrap method are presented

in Table 4.13. The prospect theory model again is better in terms of portfolio mean return

and VaR as compared to the MV while the mean variance model shows benefit in σ and

mostly in CVaR parameters. At the same time the resulting values of the ratio r̄/σ are

difficult to analyse due to the ambiguity of the results.
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.5302 0.0011 0.0021 -0.0023 -0.0023

PT 0.4391 0.0009 0.0022 -0.0027 -0.0035
DAX 100 MV 2.2284 0.0027 0.0012 0.0007 0.0002

PT 2.1879 0.0028 0.0013 0.0008 0.0001
FTSE 100 MV 1.2833 0.0017 0.0014 -0.0005 -0.0011

PT 1.6132 0.0025 0.0015 0.0000 -0.0006
S&P 100 MV 0.8257 0.0016 0.0020 -0.0017 -0.0024

PT 0.9538 0.0021 0.0022 -0.0017 -0.0035
Nikkei 225 MV 0.1783 0.0003 0.0019 -0.0027 -0.0035

PT 0.8366 0.0015 0.0018 -0.0015 -0.0022

Table 4.13: Comparative analysis of cardinality constrained models (out-of-sample:

bootstrap). Summary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 20.2696 0.0792 0.0039 0.0729 0.0715

PT 20.2971 0.0792 0.0039 0.0727 0.0716
DAX 100 MV 27.3371 0.1585 0.0058 0.1491 0.1463

PT 23.1736 0.1582 0.0068 0.1469 0.1465
FTSE 100 MV 22.9842 0.1187 0.0052 0.1103 0.1085

PT 22.8369 0.1191 0.0052 0.1103 0.1088
S&P 100 MV 20.9687 0.0993 0.0047 0.0910 0.0890

PT 20.4622 0.0994 0.0049 0.0910 0.0892
Nikkei 225 MV 16.6797 0.1393 0.0083 0.1246 0.1210

PT 16.1642 0.1387 0.0086 0.1241 0.1214

Table 4.14: Comparative analysis of cardinality constrained models (out-of-sample:

simulation of bullish market). Summary

According to the out-of-sample test results (simulation of bullish and bearish market)

which are shown in Table 4.14 and Table 4.15 similar conclusions regarding the behaviour

of the two studied models can be made. The mean variance model is mostly better in σ

and the ratio r̄/σ criteria in a bullish market while in a bearish market it demonstrates the

CVaR is slightly worse than the prospect theory. The advantage of the ratio r̄/σ and mean

return for the models in a bearish market changes from one data set to another which

underlines the high volatility of the returns in such type of market situations. However,

the prospect theory model demonstrates the benefit in r̄ in the bullish market and slightly

better VaR and CVaR in both types of market similar to the performance of the basic

model.
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.1935 0.0003 0.0015 -0.0022 -0.0028

PT 0.1988 0.0003 0.0015 -0.0023 -0.0030
DAX 100 MV -0.2595 -0.0010 0.0037 -0.0070 -0.0089

PT -0.2159 -0.0008 0.0037 -0.0066 -0.0084
FTSE 100 MV 0.0603 0.0002 0.0035 -0.0056 -0.0068

PT -0.0764 -0.0002 0.0033 -0.0056 -0.0068
S&P 100 MV -0.2076 -0.0006 0.0031 -0.0056 -0.0069

PT -0.4262 -0.0013 0.0031 -0.0063 -0.0068
Nikkei 225 MV -0.2621 -0.0011 0.0043 -0.0082 -0.0100

PT -0.0329 -0.0002 0.0046 -0.0076 -0.0094

Table 4.15: Comparative analysis of cardinality constrained models (out-of-sample:

simulation of bearish market). Summary

4.2.4 Comparative analysis of the models with a CVaR con-

straint

Analysing the performance of the basic and cardinality constrained models we notice that

behaviourally based models are generally better on the CVaR criteria compared to the

mean variance model. Thus, it is interesting to see the performance of the prospect theory

and mean variance models with a limit on CVaR. In this section we consider the results

of the two models (MV and PT models) with a CVaR constraint as formulated in Section

2.4.

As can be seen in Table 4.16 the implemented CVaR constraint increases the CPU time

for the prospect theory model dramatically. We can conclude that the target return

constraint together with a limit on the CVaR makes the search space for the solution too

tight in the region of the intersection of feasible sets. The genetic algorithm requires much

more time to overcome local optimum because of less freedom. We also notice that the

diversification of the portfolios for the prospect theory model is not changed much when

compared to the basic version.

Similar to the previous in-sample results the prospect theory model has larger r̄ in the

portfolios than the mean variance portfolios losing out in σ, VaR and CVaR parameters

due to the fact that z∗ (which is point up the CVaR constraint) for PT model is much

lower then for the MV one because of feasibility of the solutions. The mean variance
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model also gains in the ratio r̄/σ criteria in each set except the largest one. In addition,

for that data set, the PT model shows better diversification as well.

Data set Model z∗ CPU n r̄/σ r̄ σ VaR CVaR

Hang Seng MV -0.056 0.03 8 0.380 0.011 0.029 -0.038 -0.056

d=0.011 PT -0.073 40 5 0.392 0.013 0.034 -0.039 -0.070

DAX 100 MV -0.019 0.09 14 0.468 0.007 0.015 -0.013 -0.019

d=0.007 PT -0.027 647 5 0.442 0.009 0.020 -0.019 -0.024

FTSE 100 MV -0.014 0.11 15 0.541 0.007 0.013 -0.012 -0.014

d=0.007 PT -0.025 754 18 0.513 0.009 0.018 -0.019 -0.025

S&P 100 MV -0.014 0.12 23 0.550 0.006 0.011 -0.012 -0.014

d=0.006 PT -0.038 685 18 0.494 0.009 0.018 -0.023 -0.033

Nikkei 225 MV -0.036 0.41 13 0.098 0.002 0.021 -0.030 -0.036

d=0.002 PT -0.049 2553 24 0.119 0.003 0.023 -0.033 -0.040

Table 4.16: Comparative analysis of models with CVaR constraint (in-sample). Sum-

mary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.6665 0.0013 0.0019 -0.0021 -0.0029

PT 0.0760 0.0002 0.0022 -0.0035 -0.0043
DAX 100 MV 2.2560 0.0028 0.0013 0.0009 0.0003

PT 1.7529 0.0024 0.0014 0.0001 -0.0004
FTSE 100 MV 1.2400 0.0016 0.0013 -0.0006 -0.0011

PT 1.7619 0.0024 0.0014 0.0001 -0.0005
S&P 100 MV 1.6640 0.0021 0.0012 0.0000 -0.0004

PT 1.2857 0.0025 0.0019 -0.0007 -0.0015
Nikkei 225 MV 0.5530 0.0009 0.0016 -0.0017 -0.0024

PT 0.9456 0.0015 0.0016 -0.0012 -0.0018

Table 4.17: Comparative analysis of models with CVaR constraint (out-of-sample:

bootstrap). Summary

Out-of-sample bootstrap tests results for the models with a CVaR constraint are presented

in Table 4.17. The mean variance model demonstrates better values of σ while the prospect

theory model holds the leading position with regard to the largest r̄ for each set of data

which is predictable due to the previous analysis. At the same time other criteria can

not tell us much about the behaviour of these models. The results are too inconsistent to

draw any conclusions.

The other out-of-sample tests which are simulation of bullish and bearish markets are

presented in Table 4.18 and Table 4.19, and mostly confirm the findings obtained previ-

ously. In a bullish market we notice the trend that the prospect theory model shows better
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Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 19.7664 0.0793 0.0040 0.0727 0.0712

PT 17.6371 0.0793 0.0045 0.0730 0.0716
DAX 100 MV 26.4675 0.1582 0.0060 0.1479 0.1457

PT 20.4444 0.1579 0.0077 0.1477 0.1461
FTSE 100 MV 25.6109 0.1187 0.0046 0.1110 0.1089

PT 25.9197 0.1189 0.0046 0.1114 0.1091
S&P 100 MV 38.2829 0.0990 0.0026 0.0947 0.0936

PT 24.0364 0.0992 0.0041 0.0943 0.0938
Nikkei 225 MV 25.6196 0.1387 0.0054 0.1298 0.1271

PT 27.5647 0.1381 0.0050 0.1294 0.1276

Table 4.18: Comparative analysis of models with CVaR constraint (out-of-sample:

simulation of bullish market). Summary

Data set Model r̄/σ r̄ σ VaR CVaR
Hang Seng MV 0.4767 0.0005 0.0011 -0.0013 -0.0017

PT 0.3905 0.0004 0.0011 -0.0014 -0.0017
DAX 100 MV -0.1402 -0.0005 0.0037 -0.0064 -0.0079

PT -0.1175 -0.0004 0.0038 -0.0068 -0.0078
FTSE 100 MV -0.1006 -0.0003 0.0034 -0.0057 -0.0071

PT -0.1472 -0.0004 0.0030 -0.0054 -0.0067
S&P 100 MV -0.1560 -0.0004 0.0028 -0.0050 -0.0062

PT -0.3418 -0.0009 0.0027 -0.0054 -0.0060
Nikkei 225 MV -0.1673 -0.0007 0.0042 -0.0077 -0.0090

PT -0.1905 -0.0007 0.0039 -0.0071 -0.0085

Table 4.19: Comparative analysis of models with CVaR constraint (out-of-sample:

simulation of bearish market). Summary

performance in terms of r̄ and CVaR while the mean variance model is better according

to the ratio r̄/σ and the σ criteria. In the bearish market the MV model with CVaR

constraint is still the best in the ratio r̄/σ, however, it mostly loses the advantage in the

σ when compared to PT.

It is interesting to see that in the bearish market the prospect theory model with CVaR

constraint shows more benefits in the CVaR criterion than the MV model. In spite of the

lower z∗ constraint compared to MV model the PT model manages to exceed the results

of the traditional approach in terms of CVaR. Surprisingly, behaviourally based models

are more useful in the specific crisis market condition in terms of downside protection

than traditional portfolio selection approach.
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4.3 The index tracking problem and prospect theory

model

The index tracking problem usually chooses many assets in the optimal portfolio which is

very difficult to manage and rebalance. That is why the IT has a cardinality constraint

which then becomes a computationally challenging problem for researchers. In this section

we discuss empirical results of in-sample and out-of-sample performance of the IT and PT

with index tracking problems (with and without cardinality constraint). As out-of-sample

tests we use only simulation of bullish and bearish market. We do not apply bootstrap

method because our in-sample tests include all available observations (all 290 time periods

of used data sets).

4.3.1 Basic index tracking and prospect theory models

The computational results presented in this section for index tracking problems were

obtained using five data sets described earlier but with all 290 time periods. The first

asset in each data set is the index and is not included in the investment universe of assets.

We also use a methodology described above for simulation of bullish and bearish markets

in out-of-sample tests.

We analyse the performance of the results by several criteria such as CPU time, the

number of assets in the portfolio n, tracking error TE, tracking error over the index TE o,

tracking error under the index TE u. It should be noted that we use absolute values of TE,

TE o, TE u for our analysis. Table 4.20 reflects the empirical results of the experiment

for the used sets of data.

It is easy to see from the table that the number of assets in the PT with IT optimal port-

folios is approximately half those in the IT portfolios. This issue gives a good advantage

to the PT with IT in comparison with the IT model because of transaction costs and

convenience of portfolio management.

It is obvious that the tracking error of the IT model solution is always less than in PT

with IT optimal portfolios but it is still comparable. One can notice that the beneficial
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Data set Model CPU time n TE TE o TE u
Hang Seng IT 0.047 30 0.4290 0.2444 0.1845

PT+IT 70 20 0.8420 0.5690 0.2730
DAX 100 IT 0.109 69 0.3354 0.1835 0.1519

PT+IT 242 51 1.1763 0.7336 0.4427
FTSE 100 IT 0.141 81 0.2855 0.1657 0.1198

PT+IT 250 46 1.1463 0.7919 0.3544
S&P 100 IT 0.125 83 0.2682 0.1553 0.1130

PT+IT 347 67 0.9409 0.5881 0.3529
Nikkei 225 IT 0.266 159 0.1686 0.0921 0.0765

PT+IT 1803 69 0.9802 0.6300 0.3501

Table 4.20: Comparative analysis of the index tracking and prospect theory with

index tracking problem (in-sample)

difference between parameters TE o for IT and PT with IT models is much greater (in

proportion to the tracking error) than between parameters TE u for these models. This

means that the PT with IT model chooses assets with higher return than the IT model

using the reference point (index) only as a starting point but not as a benchmark. These

facts confirm that the PT with IT model focuses more penalty on not achieving the

reference point compared with exceeding it.

We test the performance of the two models using out-of-sample simulations and use the

same criteria for analysis. Firstly, we simulate on a bullish market. Table 4.21 reflects

the empirical results of the experiment.

Data set Model TE TE o TE u
Hang Seng IT 0.1292 0.1292 0

PT+IT 0.3589 0.3589 0
DAX 100 IT 0.0934 0.0918 0.0016

PT+IT 0.5470 0.5470 0
FTSE 100 IT 0.1304 0.1304 0

PT+IT 0.6335 0.6335 0
S&P 100 IT 0.1271 0.1271 0

PT+IT 0.4432 0.4432 0
Nikkei 225 IT 0.1225 0.1225 0

PT+IT 0.5660 0.5660 0

Table 4.21: Comparative analysis of the index tracking and prospect theory with

index tracking problem (out-of-sample: simulation of bullish market)
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We should note that the behaviour of the investigated models in the bullish market is

very similar to the in-sample performance. According to the tracking error parameter the

PT with IT portfolios show smaller value compare to the in-sample results.

We also test the performance of two models using an out-of-sample simulation on a bearish

market. It is interesting to explore the performance of the models in opposite conditions.

In Table 4.22 one can find the out-of-sample empirical results.

Data set Model TE TE o TE u
Hang Seng IT 0.1960 0.1960 0

PT+IT 0.1806 0.1806 0
DAX 100 IT 0.2991 0.1673 0.1317

PT+IT 0.2928 0.1481 0.1446
FTSE 100 IT 0.3013 0.1217 0.1795

PT+IT 0.3136 0.1164 0.1972
S&P 100 IT 0.3026 0.1172 0.1854

PT+IT 0.2984 0.1085 0.1899
Nikkei 225 IT 0.2750 0.1342 0.1408

PT+IT 0.3017 0.0880 0.2137

Table 4.22: Comparative analysis of the index tracking and prospect theory with

index tracking problem (out-of-sample: simulation of bearish market)

In contrast with the previous results, PT with IT model fails to show a good outcome.

This model performs worse in each data set for each parameter when compared to the IT.

Only tracking error of the prospect theory improved and becomes even less then for IT

model portfolios.

Finally, we can conclude that the prospect theory model with index tracking as the refer-

ence point is very effective in an increasing market due to its mathematical formulation

which makes it desirable to exceed the reference point (in our case it is the index values).

In addition it is more beneficial in terms of lower number of assets in the optimal portfolio.

However, in a crisis market situation PT with IT model performs worse than IT. Thus,

the prospect theory model adjusted for index tracking works well in a stable or increasing

market condition.
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4.3.2 Cardinality constrained index tracking and prospect the-

ory with index tracking models

The index tracking model with a cardinality constraint is a very computationally chal-

lenging problem. On the one hand, the optimal solution is unknown and one should set

the termination criteria very carefully to obtain the best results. On the other hand, the

CPU time required is significantly large versus the non cardinality constrained model.

For the index tracking and prospect theory with index tracking models with cardinality

constraint we used similar asset thresholds li = 0.01, ui = 1 (i = 1, . . . , N) as described

in Section 4.1.2 and parameter K∗ which is the number of assets allowed to be included

in the optimal portfolio.

Tables 4.23, 4.24 and 4.25 show the performance of the IT and PT with IT models with

the cardinality constraint in-sample, out-of-sample (simulation of bullish market) and

out-of-sample (simulation of bearish market) empirical results.

Data set Model CPU time K∗ n TE TE o TE u
Hang Seng IT 102 15 15 0.5760 0.3316 0.2448

PT+IT 74 15 15 1.1871 0.7828 0.4044
DAX 100 IT 200 20 20 0.5889 0.3280 0.2609

PT+IT 275 20 20 1.3309 0.9616 0.3693
FTSE 100 IT 193 25 25 0.6650 0.3819 0.2831

PT+IT 323 25 24 1.4432 1.0323 0.4109
S&P 100 IT 176 25 25 0.5555 0.3223 0.2332

PT+IT 459 25 22 1.2972 0.9111 0.3861
Nikkei 225 IT 612 25 25 0.7211 0.3845 0.3367

PT+IT 2780 25 25 1.3179 0.9637 0.3542

Table 4.23: Comparative analysis of index tracking and prospect theory with index

tracking problem with cardinality constraint (in-sample)

As displayed in the tables the behaviour of the models with the cardinality constraint is

completely similar to the behaviour of the non-cardinality constrained IT and PT with IT

models in different conditions. It should be noted that CPU time for behavioural models

with the additional constraint does not change much and it implies that the genetic

algorithm deals well with such type of complex problems. So, the cardinality constrained
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Data set Model TE TE o TE u
Hang Seng IT 0.1519 0.1519 0

PT+IT 0.3915 0.3915 0
DAX 100 IT 0.1202 0.1195 0.0007

PT+IT 0.7190 0.7190 0
FTSE 100 IT 0.1826 0.1826 0

PT+IT 0.7285 0.7285 0
S&P 100 IT 0.1674 0.1674 0

PT+IT 0.6149 0.6149 0
Nikkei 225 IT 0.1296 0.1296 0

PT+IT 0.6326 0.6326 0

Table 4.24: Comparative analysis of index tracking and prospect theory with index

tracking problem with cardinality constraint (out-of-sample: simulation of bullish mar-

ket)

Data set Model TE TE o TE u
Hang Seng IT 0.2484 0.2484 0

PT+IT 0.1992 0.1992 0
DAX 100 IT 0.2907 0.1761 0.1145

PT+IT 0.3343 0.1652 0.1691
FTSE 100 IT 0.3248 0.1165 0.2083

PT+IT 0.3268 0.0954 0.2313
S&P 100 IT 0.2795 0.1208 0.1586

PT+IT 0.3066 0.0876 0.2189
Nikkei 225 IT 0.2939 0.1720 0.1219

PT+IT 0.3366 0.0943 0.2423

Table 4.25: Comparative analysis of the index tracking and prospect theory with

index tracking problem with cardinality constraint (out-of-sample: simulation of bearish

market)

models results confirms the conclusion about the character of compared models made

above.

Summary.

In this chapter the empirical study and analysis are presented. We discuss the parameters

of the models and the constraints as well as define parameters for developed heuristic

algorithms applied to the prospect theory and cumulative prospect theory model. We

mentioned above that using heuristic solution approaches the parameters of these algo-

rithms is very important for an accurate solution.
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We also tested MV, PT and CPT basic models as well as with cardinality and CVaR

constraints in different market conditions. It is interesting to note that behaviourally

based models (with and without additional constraints) mostly were better in terms of

returns, VaR and CVaR in all tests. The reference point in these models leads to more

aggressive portfolios and higher level of returns. However, CPT is not as aggressive as the

PT model because it focuses not only on loss aversion but on transformed probabilities

too which take into account the number of returns below and above the reference point.

This affects portfolio selection providing the portfolios with good downside protection (see

the CVaR criterion of CPT model in-sample and out-of-sample).

We found that even in a bearish market (out-of-sample test) the prospect theory model

was more beneficial in terms of the VaR and CVaR than the traditional mean variance

model. Significantly this conclusion is valid for the model with CVaR constraint. We can

assume that loss aversion and risk aversion which are used in the prospect theory model

help to reduce the risk of portfolios in the form of the VaR and CVaR.

In unpredictable market conditions the index tracking portfolio selection problem becomes

very popular. We investigated the prospect theory model with the index as the reference

point (with and without cardinality) compared to the basic index tracking model. It

has been found that PT model is more beneficial in terms of lower number of assets in

the portfolio than index tracking (for models without cardinality constraint) that reduces

transaction costs and makes rebalancing of the portfolio more convenient. We also noticed

that returns of the PT with index tracking model mostly exceed the index returns which

confirms our previous conclusion about the impact of the reference point. However, in

a bearish market the prospect theory model shows greater losses compared to the index

tracking model.
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Chapter 5

Conclusion

The behavioural approach to portfolio theory has become very popular in the last decade

because the market has demonstrated significant instability. There is much theoretical

evidence in the literature that behaviourally based models could help to decrease the

risk of the portfolio since they take into account natural loss aversion and risk aversion

biases of the investors. However, we found that there is a lack of practical and empirical

studies in the literature which could show and prove these benefits and shed light on the

performance of these models in different market situations.

5.1 The main contribution

In this research we studied behaviourally based models such as the prospect theory model

and its extended version cumulative prospect theory using comparative analysis with the

traditional mean variance and index tracking models. In order to investigate the benefits

of a behavioural approach we implemented cardinality and CVaR constraints to these

models and tested the results out-of-sample using the bootstrap method and simulation

of bullish and bearish return distributions. The results were presented for five publicly

available data sets which reflect the dynamics of major world markets.

We developed several solution approaches for the prospect theory and cumulative prospect

theory models to obtain the accurate solution using heuristics. The differential evolution
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algorithm and genetic algorithm were implemented in Matlab in order to do this. We

also justify the parameter choice for these models using an empirical study due to the

importance of the parameters in heuristic algorithms application.

Both applications of the prospect theory model to portfolio optimisation and index track-

ing problems show the model obtains higher returns in comparison with the mean variance

approach and index tracking model. It can be explained by the effect of the reference point.

The prospect theory wants to exceed the reference point (for example, risk free rate) as

much as possible which reflects the psychological biases. So, this reference point steers

the model to choose the assets with higher returns no matter which desired level of return

for the whole period is set.

Out-of-sample tests also confirm that application of the prospect theory model in a bullish

market is beneficial in terms of returns. At the same time, in a crisis market situation the

returns of the PT and CPT models are worse in contrast with the mean variance but not

significantly.

The main finding here is that behaviourally based models (with and without proposed

constraints) outperform traditional portfolio optimisation model in terms of VaR and

CVaR for almost all out-of-sample tests. We showed empirically that the psychological

biases used in these models provide secure downside risk protection and leads to a better

VaR and CVaR as measures that better captures “tail risk” compared to variance.

In this thesis the prospect theory with index tracking has also been investigated. We can

conclude that prospect theory optimal portfolios performed better in terms of returns than

index tracking model and the index itself in-sample and in a bullish market. However, the

PT model was slightly worse in a bearish trend compared to the index tracking model. At

the same time it has been found that the PT with IT model is normally less diversified than

the IT model which is a benefit in terms of transaction costs and portfolio management

issues.

The main contributions in this thesis are:

77



1. The heuristic solution approaches (the differential evolution (basic and with spline

interpolation) and the genetic algorithm) which are developed particularly for the

behaviourally based models and can deal with a large universe of assets.

2. Empirical evidence of VaR and CVaR benefits of behaviourally based models is

compared to the mean variance model. The prospect theory model then can be

considered as a proxy of mean-CVaR model.

3. Diversification benefit of the prospect theory with index tracking model compared

to the traditional index tracking model has been empirically verified.

4. In-sample and out-of-sample results show that the prospect theory with index track-

ing model has better returns then the index tracking model (with and without car-

dinality constraint). We can conclude that the prospect theory with index tracking

model is a proxy for enhanced index tracking model.

We would like to point that, in this thesis prospect theory was applied to a large universe

of assets. Previously, only small experiments were presented in the literature (for example

2-3 assets). Thus, this empirical study aims to encourage the use of prospect theory in

practice along with mean variance and index tracking models for specific real market

conditions.

5.2 Ideas for the future research

It should be noted that the problem of portfolio optimisation using a behavioural approach

is very challenging. There are different ways to investigate its solution and performance.

As was proposed in this research we developed several heuristic solution approaches for

the prospect theory model taking into account the specific features of the model. As an

idea for future work, one can bring more intelligent choice of the assets in the portfolio

into the breeding stage of the genetic algorithm based on the observations and preferences

of the studied model. In each generation one distinguishes the assets which is included in

the best portfolio and use this information for the breeding stage in the next generation.
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Instead of checking all assets in the data the algorithm could faster find the preferable one

using the information about frequency of appearance of assets in previous best portfolios.

It could help to decrease the CPU time for this algorithm by reducing the search space of

suitable assets for the best portfolios and decreasing the number of generations.

In this thesis we used coefficients of risk aversion, loss aversion and for probability weight-

ing function obtained by Tversky and Kahneman in [78]. In our tests we noticed that the

results of the prospect theory and cumulative prospect theory models are very sensitive to

the values of α, β, λ, γ and δ. We propose that these parameters will change depending

on real market conditions. Previously we discussed irrationality of the investor because

he/she becomes risk seeking (not risk aversive) when faces losses. Therefore, risk aversion

coefficient in a bullish market tend to be greater than that in a bearish market. It is

interesting to test the prospect theory model with different values of these parameters in

order to define appropriate values for different market conditions.

Also we investigated the performance of the prospect theory model with several constraints

and in different conditions. However, it could be interesting to add a non-risky asset (i.e.,

cash account) in the data set to research its influence on the behaviour of the model’s

choice. As for the out-of-sample testing it would be useful to obtain and analyse the

performance of the prospect theory model in simulation trading which includes holding

periods and rebalacing thereafter. One can run the model using 1, . . . , 100 time periods

and obtain the best portfolio. Then another run using 10, . . . , 110 should be made which

imitates rebalacing stage. Sequential repetition of these steps provide the performance of

the model obtained by technique which is close to real market trading including revision

of chosen portfolio in several steps.
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Appendix A

Implementation of the solution

approaches

A.1 Differential evolution algorithm

Pseudo-code of the differential evolution algorithm for the prospect theory portfolio opti-

misation problem with cardinality constraint is given below.

Generate initial population vi ∈ DK, i = 1, . . . , P 2,

cycle of G generations

for each vi in population P

choose 3 random vectors va �= vb �= vc �= vi

for each component j of vi do

with probability π1 : z1 ← N(0, σ1), else z1 = 0

with probability π2 : z2 ← N(0, σ2), else z2 = 0

pick uj ∼ U(0, 1)

if uj < CR or j = R

then ṽij = vaj + (F + z1)(vbj − vcj + z2)
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else ṽij = vij

if PT (ṽi) > PT (vi)

then xi = ṽi

else xi = vi

In g = G find x∗

i = {xi|max{PTcc(x1), . . . ,PTcc(xP 2)}, E(max PTcc(xi)) ≥ d}.

In the beginning of the script file we set the CPU time counter. Then all the prescribed

parameters and constants are introduced. We use the matrix of asset returns as input data,

so, we load a file with the necessary data set, count return means for each asset and define

the size of the vector of assets. We also calculate d for a specific data set using a range

of possible returns for this set. The main script file follows the steps of the differential

evolution algorithm invoking developed functions for generating an initial population,

breeding and mutation, calculating the objective function and expected returns.

The first function generates an initial population (matrixN×P 2) with limit on the number

of assets K which are chosen for each vector randomly from [3, K]. Each element of this

matrix is generated randomly following the rule 0.1 + 0.9 ∗ ν, where ν ∈ U(0, 1) in order

to reduce the appearance of small values. Then we normalise each vector of the initial

population to provide the condition
N∑
i=1

ωi = 1 and check the buy-in threshold constraint

li and ui.

In each generation of the algorithm we apply differential evolution breeding and mutation.

For each vector in the population using the developed function of choice we randomly

choose 3 integer numbers of vectors which are distinct from the given one and each other.

Then we find z1 and z2 with prescribed probabilities and do differential evolution crossover

following the rules described in Section 3.1.1. We normalise the absolute value of the

obtained vector, check for the buy-in threshold constraint li and ui and the cardinality

constraint. After this it is necessary to normalise again. The specifics of the algorithm is

that because of the crossover formula the weights are spread all over the set and became

too small. That is why we normalise twice, before and after checking the mentioned

constraints. Then we choose a more fittest vector according to the maximum objective
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function criteria. The developed function provides the value of the prospect theory value

in accordance with problem formulation (2.18). The new population is then created.

In the last generation g = G we choose the solution from the last population which has

the maximum value of the objective function and satisfies the d constraint. We use the

developed function for calculating the expected returns for each potential solution.

Remark.

When dealing with large scale data sets, the differential evolution algorithm fails to find

a best solution for the chosen d. In this case we use some neighborhood for the parameter

d in the form of d−n. We start to select the right n from 0.00002 and increase each time

by multiplying by 10 if the programme still does not find an optimal solution.

For the differential evolution with spline interpolation solution approach we modify the

function which calculates the prospect theory utility. In the new function we identify

the values of the utility which are very close to the origin from both sides, negative and

positive, and implement the spline interpolation in order to smooth the objective function

using the coefficients obtained in (3.3).

It is easy to change the standard prospect theory problem to the prospect theory with

index tracking problem. We simply change the scalar value of the reference point r0 into

dynamic values of the index. We also remove the d constraint check from the main script.

The prospect theory with CVaR can be solved using the same main script where the

final assessment stage is modified in order to choose the solution which satisfies not only

the target return constraint but the CVaR limit as well. We developed the function for

calculation of the CVaR of portfolio.

It should be noticed that for the basic prospect theory model (without cardinality con-

straint) we put K = N thereby making the cardinality constraint redundant.
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A.2 Genetic algorithm

Pseudo-code of the genetic algorithm for the prospect theory portfolio optimisation prob-

lem with a cardinality constraint is given below.

Generate initial population xi ∈ DK, i = 1, . . . , P 2,

cycle of G generations

calculate values PTcc(x1), . . . ,PTcc(xP 2)

sort PTcc(xm1
) ≥ . . . ≥ PTcc(xm

P2
)

save max PTcc(xi)

xm1
, . . . , xm2P

= y1, . . . , y2P proceed to the next generation

randomly pick x̃j and x̂k in the set {xm2P
, · · · , xm

P2
}

∀ i, j, k, l, i, j, k = 2P + 1, . . . , P 2, l = 1, . . . , N

if x̃jl = ωj and x̂kl = ωk

then ail = χ · ωj + (1− χ) · ωk, χ ∈ U(0, 1)

else if x̃jl = 0 and x̂kl = 0

then ail = 0

else if x̃jl = ωj and x̂kl = 0

then with π ail = ωj

with mutation probability ζ > 0

ail ← âij, âil ∈ U(0, 1)

choose maxPTcc(yi) = max{(ai, x̃j , x̂k)}

find PTcc(yi) = max{PTcc(y1), . . . ,PTcc(yP 2)}

choose PTcc(y
∗

i ) = max{max PTcc(yi),max PTcc(xi)}

y∗i is an optimal solution

For this algorithm we develop four functions in order to create an initial population, to

calculate the objective function (the prospect theory utility), to breed and mutate the
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elements of the new population and to calculate the expected return of each vector of

asset weights. All these functions are used in the main script which follows the steps of

the genetic algorithm discribed in Section 3.1.3. As all functions except for the breeding

and mutation are similar to the differential evolution algorithm we will now describe only

the second function which is specific for the genetic algorithm.

The function of breeding and mutation was developed in order to create a new population

from the 2P best elements of the initial population which are not changed and from the

P 2 − 2P elements which are used for breeding. In the case when an element is in both

parents we randomly choose χ ∈ U(0, 1) and apply the formula ail = χ ·ωj+(1−χ) ·ωk in

order to decide which weight this asset should take. In our opinion, it must be different

from the parents’ weights. In the case if the element is not in both parents we simply

put it 0 for the child. If it is only in one parent, we include this element with its weight

to the child vector with the chosen probability π. The probability π = 10% was chosen

because of the asset selection feature of this particular solution approach. It converges to

a solution with a low number of assets with high returns. A higher level of probability here

might increase the CPU time of the algorithm without any improvement in the solution.

In this function we also implement mutation. It should be noted that we mutate only

zeros elements. Then we check the cardinality condition in two ways. If the number of

non zero elements n in the vector is greater then K we define the difference δ = n −K

and in a cycle of δ repetitions we randomly choose the element in this vector and if it

is greater then zero make it zero. If n < 3 (because we are not interesting in portfolios

of 2 elements) we randomly choose a zero element and generate the value using the rule

0.1 + 0.9 ∗ ν, where ν ∈ U(0, 1) as in the first function. Then we normalise the child

vectors and check the buy-in threshold constraint. It is necessary to define which vector,

mum, dad or child, will go to the new population. We choose by the maximum value of

the objective function.

All extensions for prospect theory models (index tracking, cumulative prospect theory

utility and CVaR constraint) can be made using modified functions for calculating the

prospect theory utility or applying the developed function for the CVaR constraint to the
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main script similar as described in the previous section. Also the cardinality constraint

can be removed by making K = N .

A.3 Other implementations

Apart form the methods described above we tried other implementations. For example,

we started with the genetic algorithm built in solver ga in Global Optimization Toolbox

in Matlab. This solver finds the minimum of a function using a genetic algorithm. In our

case it was difficult to define and set up the most important parameters which impact

on the solution. The best portfolio obtained using this approach included only one asset

which is not a suitable result for this analysis. The same problem appears when we used

the psoptimset solver (pattern search algorithm) in the Global Optimization Toolbox in

Matlab. This function optimises the objective function subject to linear constraints. We

were not happy with the diversification of the best portfolio obtained using the psoptimset

solver.

We also tried to develop the differential evolution algorithm and the genetic algorithm in

AMPL but we found that it is difficult to implement some particular stages and specific

rules of breeding in this programming language when compared to Matlab.
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Appendix B

Parameters G and P of the heuristic

approaches

Parameter Parameter value CPU time PT (x) ξ
G 150 444 0.5937 0.0152

180 550 0.6442 0.0002
210 652 0.6243 0.0001

P 35 415 0.5694 0.0032
40 550 0.6442 0.0002
45 697 0.6437 0.0001

Table B.1: Genetic algorithm parameter comparison for the DAX 100 data set

Parameter Parameter value CPU time PT (x) ξ
G 160 532 0.823 0.0043

185 630 0.8429 0.0004
220 718 0.8429 0.0002

P 37 479 0.8423 0.0164
42 630 0.8429 0.0004
47 755 0.8431 0.0002

Table B.2: Genetic algorithm parameter comparison for the FTSE 100 data set

Remark. The parameters of G and P for the Nikkei 225 data set is equal to the S&P

100 data set in our empirical study because specifically for these returns (the Nikkei

225 set) the genetic algorithm finds the best solution quickly enough. So, we do not

need to increase the number of generation and population size. The resulting portfolio is
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Parameter Parameter value CPU time PT (x) ξ
G 160 586 0.7353 0.0172

190 721 0.7822 0.0006
220 953 0.7853 0.0004

P 40 542 0.7421 0.0043
45 721 0.7822 0.0006
50 994 0.7864 0.0003

Table B.3: Genetic algorithm parameter comparison for the S&P 100 data set

Parameter Parameter value CPU time PT (x) ξ
G 160 1050 -0.9555 0.0001

190 1179 -0.9894 0
220 1547 -0.9894 0

P 40 939 -0.9468 0.0021
45 1179 -0.9894 0
50 1486 -0.9894 0

Table B.4: Genetic algorithm parameter comparison for the Nikkei 225 data set

undiversified compare to the number of assets available in total. The algorithm defines

the preferable assets very fast and the rest of time just plays with the weights.
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Appendix C

Performance of the models

Analysis of higher order moments.

We notice that the cumulative prospect theory model mostly has greater value of skewness

in-sample and out-of-sample tests compared to other studied basic models. In contrast,

the mean variance model obtained lower positive skewness and greater negative skewness.

This indicates that behaviourally based models have longer and a fatter tail on the right

hand side and smaller tail on the left hand side compared to the traditional mean variance

model. We can conclude that the PT and CPT models have lower risk in the left tail

which leads to the lower CVaR value for these portfolios. Moreover, CPT has lower value

of kurtosis which also indicates thinner tails compared to other basic models.

Cardinality and CVaR constrained models demonstrate inconsistent results and we can

notice a trend only in-sample. The negative skewness of the prospect theory model is

always less than the negative skewness of the MV model. This provides good downside

protection of behaviourally based portfolios. It is difficult to draw any conclusions when

comparing the kurtosis of the PT and the MV models with additional constraints. The

results change from one data set to another. Only for the CVaR constrained models it is

most likely that the PT model has slightly lower kurtosis compared to MV model.
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C.1 Basic models

Data set Model CPU n r̄/σ r̄ σ VaR CVaR skewness kurtosis

Hang Seng MV 0.015 9 0.3926 0.0118 0.0301 -0.0373 -0.0644 -0.7680 4.5608

PT 36 8 0.3922 0.0131 0.0335 -0.0371 -0.0727 -0.8875 5.5543

CPT 104 5 0.3616 0.0130 0.0359 -0.0500 -0.0668 -0.0902 3.4314

DAX 100 MV 0.031 16 0.4683 0.0060 0.0128 -0.0141 -0.0197 0.3862 3.9497

PT 550 12 0.4529 0.0083 0.0183 -0.0145 -0.0248 0.9056 4.9426

CPT 1790 7 0.4369 0.0080 0.0183 -0.0144 -0.0206 1.2203 5.9422

FTSE 100 MV 0.031 14 0.5636 0.0077 0.0137 -0.0121 -0.0178 0.4545 3.0106

PT 630 17 0.4797 0.0090 0.0188 -0.0114 -0.0272 0.5584 3.6605

CPT 1904 22 0.4933 0.0085 0.0171 -0.0153 -0.0163 0.9358 3.8126

S&P 100 MV 0.046 11 0.5115 0.0109 0.0213 -0.0279 -0.0328 -0.1170 2.5519

PT 721 6 0.4940 0.0109 0.0221 -0.0267 -0.0391 -0.2376 3.1125

CPT 1994 7 0.4717 0.0105 0.0222 -0.0265 -0.0265 0.1630 2.5377

Nikkei 225 MV 0.14 13 0.0159 0.0003 0.0196 -0.0349 -0.0395 0.2528 3.1046

PT 1179 4 0.1434 0.0034 0.0238 -0.0338 -0.0384 0.4089 3.1774

CPT 4862 4 0.1598 0.0039 0.0246 -0.0325 -0.0326 0.4674 2.5090

Table C.1: Comparative analysis of basic models (in-sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.6844 0.0014 0.0020 -0.0018 -0.0028 -0.0643 2.8745

PT 0.5388 0.0012 0.0021 -0.0023 -0.0031 0.0597 2.9079
CPT 0.4260 0.0009 0.0021 -0.0026 -0.0035 -0.0179 3.0211

DAX 100 MV 1.9785 0.0024 0.0012 0.0004 -0.0001 0.0886 3.1530
PT 1.7766 0.0024 0.0013 0.0005 -0.0005 -0.1066 3.0137
CPT 2.4833 0.0033 0.0013 0.0012 0.0006 0.0271 2.9207

FTSE 100 MV 1.1103 0.0016 0.0014 -0.0008 -0.0014 0.0003 3.0648
PT 1.6570 0.0023 0.0014 0.0000 -0.0006 -0.0860 2.8541
CPT 1.8717 0.0024 0.0013 0.0002 -0.0003 -0.0985 3.1009

S&P 100 MV 0.7232 0.0013 0.0019 -0.0017 -0.0024 0.0242 3.1616
PT 0.8441 0.0016 0.0019 -0.0015 -0.0023 0.0090 3.0802
CPT 0.9175 0.0017 0.0019 -0.0012 -0.0021 0.0520 2.9262

Nikkei 225 MV 0.3317 0.0005 0.0016 -0.0021 -0.0029 -0.1178 3.1631
PT 0,9804 0,0019 0,0020 -0,0014 -0,0022 -0.0796 3.0106
CPT 0.9960 0.0019 0.0020 -0.0013 -0.0022 -0.0470 3.2628

Table C.2: Comparative analysis of basic models (out-of-sample: bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 22.3694 0.0795 0.0036 0.0736 0.0722 0.0077 2.9332

PT 19.5623 0.0792 0.0040 0.0727 0.0724 -0.0733 2.8786
CPT 15.0646 0.0794 0.0053 0.0705 0.0686 0.0415 3.0163

DAX 100 MV 31.5966 0.1582 0.0050 0.1501 0.1478 -0.1712 3.2582
PT 22.6324 0.1583 0.0070 0.1471 0.1443 -0.0164 2.6740
CPT 21.0312 0.1584 0.0075 0.1458 0.1430 0.0159 3.0393

FTSE 100 MV 22.9827 0.1189 0.0052 0.1106 0.1084 0.0645 2.9462
PT 27.4194 0.1187 0.0043 0.1115 0.1099 0.0363 2.9529
CPT 30.1336 0.1188 0.0039 0.1120 0.1103 -0.1184 3.0554

S&P 100 MV 23.7931 0.0986 0.0041 0.0918 0.0901 -0.0690 3.1821
PT 22.1445 0.0991 0.0045 0.0917 0.0894 -0.1353 3.0277
CPT 24.0876 0.0991 0.0041 0.0924 0.0904 -0.0349 3.0953

Nikkei 225 MV 26.3628 0.1385 0.0053 0.1263 0.1236 -0.1799 3.0711
PT 18.3664 0.1388 0.0076 0.1301 0.1272 0.0396 2.9534
CPT 17.5419 0.1382 0.0079 0.1248 0.1217 -0.0604 2.9483

Table C.3: Comparative analysis of basic models (out-of-sample: simulation of bullish

market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.2580 0.0004 0.0015 -0.0022 -0.0026 0.1180 2.9394

PT 0.2187 0.0003 0.0016 -0.0022 -0.0030 -0.0006 3.1120
CPT 0.2659 0.0004 0.0016 -0.0023 -0.0030 -0.0475 3.0858

DAX 100 MV -0.1797 -0.0007 0.0036 -0.0067 -0.0081 0.0224 2.9247
PT -0.1460 -0.0006 0.0039 -0.0066 -0.0075 0.0936 3.2210
CPT -0.1912 -0.0008 0.0040 -0.0074 -0.0088 0.0864 2.8924

FTSE 100 MV -0.0235 -0.0001 0.0035 -0.0061 -0.0075 -0.0557 3.1055
PT -0.1712 -0.0004 0.0026 -0.0047 -0.0057 0.0261 2.7377
CPT -0.0619 -0.0002 0.0031 -0.0052 -0.0064 0.0311 2.8292

S&P 100 MV -0.1088 -0.0003 0.0031 -0.0054 -0.0066 -0.0098 2.8096
PT -0.0956 -0.0003 0.0030 -0.0054 -0.0065 -0.0253 3.0193
CPT -0.2678 -0.0008 0.0032 -0.0060 -0.0074 0.1160 3.4702

Nikkei 225 MV -0.0658 -0.0002 0.0038 -0.0064 -0.0079 0.1018 2.9981
PT 0.0420 0.0002 0.0037 -0.0062 -0.0074 0.0569 2.9714
CPT -0.2317 -0.0009 0.0039 -0.0069 -0.0083 0.2360 2.9105

Table C.4: Comparative analysis of basic models (out-of-sample: simulation of bearish

market)
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C.2 Cardinality constrained models

Data set Model CPU K n r̄/σ r̄ σ VaR CVaR skewness kurtosis

Hang Seng MV 0.09 7 7 0.3919 0.0118 0.0301 -0.0363 -0.0643 -0.7415 4.5296

PT 37 7 6 0.3915 0.0132 0.0338 -0.0363 -0.0731 -0.9107 5.7858

DAX 100 MV 0.25 10 10 0.4604 0.0060 0.0130 -0.0159 -0.0191 0.5002 4.2193

PT 520 10 8 0.4484 0.0080 0.0179 -0.0141 -0.0250 1.0201 5.4878

FTSE 100 MV 0.11 10 10 0.5631 0.0077 0.0137 -0.0122 -0.0180 0.4317 2.9809

PT 600 10 8 0.5218 0.0096 0.0184 -0.0107 -0.0269 0.2667 3.0293

S&P 100 MV 0.14 5 5 0.4911 0.0109 0.0222 -0.0263 -0.0371 -0.2159 2.8623

PT 690 5 5 0.4729 0.0120 0.0253 -0.0255 -0.0413 -0.1791 2.8395

Nikkei 225 MV 0.89 3 3 0.0023 0.0000 0.0209 -0.0381 -0.0439 0.2057 3.4939

PT 2597 3 3 0.1420 0.0034 0.0239 -0.0327 -0.0369 0.4254 2.9207

Table C.5: Comparative analysis of cardinality constrained models (in-sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.5302 0.0011 0.0021 -0.0023 -0.0023 -0.0626 3.0993

PT 0.4391 0.0009 0.0022 -0.0027 -0.0035 00549 2.9751
DAX 100 MV 2.2284 0.0027 0.0012 0.0007 0.0002 0.0580 2.8808

PT 2.1879 0.0028 0.0013 0.0008 0.0001 0.0533 3.1195
FTSE 100 MV 1.2833 0.0017 0.0014 -0.0005 -0.0011 -0.0076 2.8525

PT 1.6132 0.0025 0.0015 0.0000 -0.0006 0.0746 3.0577
S&P 100 MV 0.8257 0.0016 0.0020 -0.0017 -0.0024 0.0175 3.0635

PT 0.9538 0.0021 0.0022 -0.0017 -0.0035 0.0083 2.8979
Nikkei 225 MV 0.1783 0.0003 0.0019 -0.0027 -0.0035 0.0701 3.1857

PT 0.8366 0.0015 0.0018 -0.0015 -0.0022 -0.0003 3.0719

Table C.6: Comparative analysis of cardinality constrained models (out-of-sample:

bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 20.2696 0.0792 0.0039 0.0729 0.0715 0.0667 2.7705

PT 20.2971 0.0792 0.0039 0.0727 0.0716 0.0255 3.1279
DAX 100 MV 27.3371 0.1585 0.0058 0.1491 0.1463 -0.0617 3.0681

PT 23.1736 0.1582 0.0068 0.1469 0.1465 -0.0722 3.0509
FTSE 100 MV 22.9842 0.1187 0.0052 0.1103 0.1085 0.0468 2.6911

PT 22.8369 0.1191 0.0052 0.1103 0.1088 -0.1554 3.0641
S&P 100 MV 20.9687 0.0993 0.0047 0.0910 0.0890 -0.1045 3.0191

PT 20.4622 0.0994 0.0049 0.0910 0.0892 -0.0721 2.9410
Nikkei 225 MV 16.6797 0.1393 0.0083 0.1246 0.1210 -0.2357 2.9273

PT 16.1642 0.1387 0.0086 0.1241 0.1214 -0.0476 3.5053

Table C.7: Comparative analysis of cardinality constrained models (out-of-sample:

simulation of bullish market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.1935 0.0003 0.0015 -0.0022 -0.0028 0.0173 2.9740

PT 0.1988 0.0003 0.0015 -0.0023 -0.0030 -0.1112 3.0485
DAX 100 MV -0.2595 -0.0010 0.0037 -0.0070 -0.0089 -0.0577 3.0591

PT -0.2159 -0.0008 0.0037 -0.0066 -0.0084 -0.0563 3.0952
FTSE 100 MV 0.0603 0.0002 0.0035 -0.0056 -0.0068 0.1463 2.9910

PT -0.0764 -0.0002 0.0033 -0.0056 -0.0068 0.1090 2.8824
S&P 100 MV -0.2076 -0.0006 0.0031 -0.0056 -0.0069 0.0738 3.1490

PT -0,4262 -0,0013 0,0031 -0,0063 -0,0068 0.0145 3.0402
Nikkei 225 MV -0.2621 -0.0011 0.0043 -0.0082 -0.0100 0.0001 3.0062

PT -0.0329 -0.0002 0.0046 -0.0076 -0.0094 0.1757 3.2297

Table C.8: Comparative analysis of cardinality constrained models (out-of-sample:

simulation of bearish market)
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C.3 Models with the CVaR constraint

Data set Model CPU n r̄/σ r̄ σ VaR CVaR skewness kurtosis

Hang Seng MV 0.03 8 0.3803 0.0110 0.0289 -0.0379 -0.0560 -0.4039 3.7601

PT 40 5 0.3916 0.0134 0.0343 -0.0389 -0.0695 -0.6682 4.9819

DAX 100 MV 0.09 14 0.4681 0.0070 0.0150 -0.0125 -0.0190 0.8177 4.7537

PT 647 5 0.4422 0.0087 0.0196 -0.0189 -0.0236 1.0310 4.9838

FTSE 100 MV 0.11 15 0.5405 0.0070 0.0129 -0.0121 -0.0140 0.6732 3.2146

PT 754 18 0.5127 0.0090 0.0176 -0.0193 -0.0246 0.5455 3.4378

S&P 100 MV 0.12 23 0.5502 0.0060 0.0109 -0.0120 -0.0140 -0.1668 2.5543

PT 685 18 0.4940 0.0091 0.0184 -0.0228 -0.0326 -0.2698 3.2304

Nikkei 225 MV 0.41 13 0.0976 0.0020 0.0205 -0.0303 -0.0359 0.3086 2.8616

PT 2553 24 0.1192 0.0027 0.0226 -0.0333 -0.0398 0.3268 2.9935

Table C.9: Comparative analysis of models with CVaR constraint (in-sample)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.6665 0.0013 0.0019 -0.0021 -0.0029 -0.1827 3.0386

PT 0.0760 0.0002 0.0022 -0.0035 -0.0043 0.0276 3.0790
DAX 100 MV 2.2560 0.0028 0.0013 0.0009 0.0003 0.1613 3.4775

PT 1.7529 0.0024 0.0014 0.0001 -0.0004 -0.0045 2.9947
FTSE 100 MV 1.2400 0.0016 0.0013 -0.0006 -0.0011 -0.1315 2.8959

PT 1.7619 0.0024 0.0014 0.0001 -0.0005 -0.0070 3.0636
S&P 100 MV 1.6640 0.0021 0.0012 0.0000 -0.0004 0.0636 2.9329

PT 1.2857 0.0025 0.0019 -0.0007 -0.0015 0.0631 3.0299
Nikkei 225 MV 0.5530 0.0009 0.0016 -0.0017 -0.0024 -0.0866 2.8032

PT 0.9456 0.0015 0.0016 -0.0012 -0.0018 -0.0131 2.8478

Table C.10: Comparative analysis of models with CVaR constraint (out-of-sample:

bootstrap)
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Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 19.7664 0.0793 0.0040 0.0727 0.0712 0.0963 2.8726

PT 17.6371 0.0793 0.0045 0.0730 0.0716 -0.0638 2.9289
DAX 100 MV 26.4675 0.1582 0.0060 0.1479 0.1457 0.0123 3.0686

PT 20.4444 0.1579 0.0077 0.1477 0.1461 0.0799 2.6602
FTSE 100 MV 25.6109 0.1187 0.0046 0.1110 0.1089 -0.0580 3.1282

PT 25.9197 0.1189 0.0046 0.1114 0.1091 -0.0336 3.0600
S&P 100 MV 38.2829 0.0990 0.0026 0.0947 0.0936 -0.0364 2.8962

PT 24,0364 0.0992 0.0041 0.0943 0.0938 -0.1241 3.0880
Nikkei 225 MV 25.6196 0.1387 0.0054 0.1298 0.1271 -0.1693 3.0234

PT 27.5647 0.1381 0.0050 0.1294 0.1276 -0.0939 2.9247

Table C.11: Comparative analysis of models with CVaR constraint (out-of-sample:

simulation of bullish market)

Data set Model r̄/σ r̄ σ VaR CVaR skewness kurtosis
Hang Seng MV 0.4767 0.0005 0.0011 -0.0013 -0.0017 -0.0812 3.1465

PT 0.3905 0.0004 0.0011 -0.0014 -0.0017 -0.0050 3.1637
DAX 100 MV -0.1402 -0.0005 0.0037 -0.0064 -0.0079 0.1444 3.5092

PT -0.1175 -0.0004 0.0038 -0.0068 -0.0078 0.1031 3.2481
FTSE 100 MV -0.1006 -0.0003 0.0034 -0.0057 -0.0071 0.2879 3.3762

PT -0.1472 -0.0004 0.0030 -0.0054 -0.0067 0.0371 3.2816
S&P 100 MV -0.1560 -0.0004 0.0028 -0.0050 -0.0062 0.0431 3.1581

PT -0.3418 -0.0009 0.0027 -0.0054 -0.0060 0.0466 3.2402
Nikkei 225 MV -0.1673 -0.0007 0.0042 -0.0077 -0.0090 0.1943 3.2532

PT -0.1905 -0.0007 0.0039 -0.0071 -0.0085 0.0980 2.9356

Table C.12: Comparative analysis of models with CVaR constraint (out-of-sample:

simulation of bearish market)
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Figure C.1: S&P 100. Basic models. In-sample.

C.4 Graphs of distributions of portfolio returns (an

example)

Graphs C.1, C.2, C.3 and C.4 show the distribution of returns of the mean variance,

prospect theory and cumulative prospect theory models in-sample and out-of-sample in

the S&P 100 data set as an example. This illustrates the conclusion which is made in the

thesis and in the analysis of higher order moments that behaviourally based models have

thicker left tails and higher returns compared to the traditional mean variance model out-

of-sample. According to graph C.1 MV model has slightly thicker left tail than PT and

CPT models, thus, all models demonstrate very similar distribution of portfolio returns.

However, in bootstrap test the cumulative prospect theory has an advantage in left tail

compared to other models (see graph C.2). At the same time the prospect theory shows

benefit in bullish and bearish market in terms of distribution on the left tail which leads

to smaller CVaR risk measure (see graphs C.3 and C.4).

MV - the mean variance model;

PT - the prospect theory model;

CPT - the cumulative prospect theory model.
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Figure C.2: S&P 100. Basic models. Out-of-sample (bootstrap).

Figure C.3: S&P 100. Basic models. Out-of-sample (simulation of bullish market).
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Figure C.4: S&P 100. Basic models. Out-of-sample (simulation of bearish market).
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