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The reality of modern finance is that a major paradigm shift is underway. This is a common issue 

for all spheres of knowledge in the modern world because of international integration and sophistication of 

new technologies. The more science develops the more new questions appear. Chances are that “the new 

financial paradigm” will combine neoclassical and behavioural elements [1]. 

 

Behavioural finance is the study of how psychology impacts financial decisions in 

households, markets and organisations. Behavioural finance does not assume rational agents or 

frictionless markets. It suggests that the institutional environment is vitally important. The 

starting point is bounded rationality [1]. 

The recent financial crisis has shown the shortcomings of individual market instruments 

and the low level of validity investment decisions. This largely can be explained by dismissive 

investors' attitude to assess the real risks that are perceived by them in the intuitive level. 

One of the most prominent alternatives to the mean-variance theory and expected utility 

theory is prospect theory. This theory is one of the economic theories which incorporates real 

human decision patterns and psychology into choice behavior. It was created in order to estimate 

the risk involving gains and losses. Within this framework, the individuals estimate the losses and 

gains utility function subjectively. For this purpose they use a starting point (or reference point or 

“status quo”) so, that: 

− if a portfolio return value is equal to this number, then it means that the investor obtains a 

zero gain, 

− if a portfolio return value is higher, then the investor considers that he gained from the 

portfolio investment, 

− if it is lower, then he lost. 

Prospect theory is important for decision making under uncertainty. It departs from the 

traditional expected utility framework in important ways. It provides psychological 

underpinnings for the behavioural approaches to portfolio selection that are quite different from 

the traditional approaches such as the mean variance framework. Prospect theory was developed 

by two psychologists, Daniel Kahneman and Amos Tversky, and published in the Econometrica 

in 1979 [2]. 

Traditional finance theory assumes that investors make a decision under uncertainty by 

maximizing expected utility of wealth or consumption. The expected utility theory is 

mathematically elegant and is a rational-based framework built upon axioms. However, the 

underlying assumptions have been shown by many studies to be an inaccurate description of how 

people actually behave when choosing among risky alternatives. 

Kahneman and Tversky experimentally obtained the utility (value) function which was 

dependent on the initial value deviation. This value function is convex for the gains and non-

convex for the losses [2]. This means risk aversion is associated with the cases of the gains and 

risk inclination with the losses. It is worth mentioning that the aforementioned function has the 

steepest gradient for losses. 

The original prospect theory choice process and objective function consists of two phases 

and corresponding functions. The choice process under prospect theory starts with the editing 

phase, followed by the evaluation of edited prospects, and finally the alternative with the highest 

value is chosen [3]. 

During the editing phase, agents discriminate gains and losses. The agents attach a 
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subjective value to the gamble relative to a reference point 0r . They assume the value function: 
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where 0>,, λβα . Kahneman and Tversky found in their experiments that 0.88== βα  and 

2.25=λ  [4]. These coefficients characterise the level of risk aversion (α  and β ) and the level 

of loss aversion ( λ ). 

Standard utility functions have been replaced by the prospect theory value function. It has 

two parts. The part in the gain domain is concave and the part in the loss domain is convex, 

capturing the risk-averse tendency for gains and risk-seeking tendency for losses by many 

decision makers [5]. 

 

 
Fig. 1. Prospect Theory Value Function with 0.88== βα  and 2.25=λ  

 

The next stage is the evaluating phase where an investor calculates the prospect theory 

utility based on the potential outcomes and their respective probabilities, and then chooses the 

alternative having a higher utility as follows: 
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Investors perform additional mental adjustments in the original probability function 

( )xfp = , defining the prospect theory probability weighting function ( )pπ . According to this 

consider the probability weighting function: 
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where γ  is the adjustment factor. 

The probability weighting function, which is based on the observation that most people 

tend to overweigh small probabilities and underweigh large probabilities. Although the original 

formulation of prospect theory proposed by Kahneman and Tversky (1979) was only defined 

mostly for lotteries with two non-zero outcomes, it can be generalised to n  outcomes. 

Generalisations have been used by various authors (see, for example [6], [7], [8]). 
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Fig. 2. A Hypothetical Prospect Theory Weight Function 

by Kahneman and Tversky 1979 

 

This formulation illustrates all four elements of prospect theory:  

− reference dependence,  

− loss aversion,  

− diminishing sensitivity, and  

− probability weighting. 

The portfolio optimisation problem is a question of how to determine an amount 

(proportion, weight) of money to invest in each type of asset within the portfolio in order to 

receive the highest possible return (or utility) subject to appropriate level of risk by the end of the 

investment period. At least one constraint is known that the sum of the weights of the securities 

must be equal to one. 

In this paper we consider prospect theory model with cardinality constraint in the form of 

portfolio optimisation problem. It is known that adding limit for number of assets in portfolio 

change the classical prospect theory model into mixed integer non-linear programming problem 

which is NP-complete [9]. To solve this problem we use heuristics namely genetic algorithm and 

method Monte Carlo dealing with prospect theory model, basing on the fact that this model is 

hard to solve and standard numerical approaches is incapable to get a quality solution. The 

complexity of the problem comes from the non linearity of the objective function as well as non 

linear constraints of the model. 

Let: 

N  – number of assets 

S  – number of scenarios (time periods) 

jρ  – probability of scenario 1=sρ∑  

ir  – expected return of asset i  

isr  – return of asset i  in scenario ))(1(1, SsNis ≤≤≤≤  

0≥iω  – weight of asset i  in portfolio 

),,(= 1 Nx ωω K  – portfolio and 1=
1= i

N

i
ω∑  

}:),,(={= 1 ixX
N

N ∀∈Rωω K  – set of all portfolios 

)(xrs  – return of portfolio x  in scenario j  with respect probability sρ  
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d  – desirable level of return. 

Using the notation given above we formulate the prospect theory model with cardinality 

constraint: 
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The scheme of genetic algorithm and method Monte Carlo approach for solving the 

prospect theory problem with cardinality constrain is given in Fig. 3. Let describe each steps of 

the approach following the scheme. 
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Fig. 3. Scheme of the Prospect Genetic Algorithm 

and Method Monte Carlo Approach 
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In the block 1 we set original information about asset prices in the form of matrix 
TXN

PRICE  and then convert it to matrix of returns TXNR  (see block 2). In the blocks 3 and 4 is 

given range of K  which is investigated )0,75=,0,1=( 0 NKNK end  and initial value of K .The 

blocks 5-10 implement method Monte Carlo for each value of K  from the range of possible 

values. In block 5 the number of iteration are set and iteration counter is reset to zero. 

The number of iteration evaluated according the following assumption. The confident 

interval of the sample mean is defined as follows: 
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where Aσ  is the sample standard deviation, GM  is the size of the general population, 

1

0,95

−M
t  is the percentile of of the Student distribution (T-distribution), A

mx  is the sample mean. 
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this assumption and defined (given) value of the confident interval it is possible to evaluate the 

value of M . The block 6 is a counter of iterations. 

In the block 7 for each current iteration randomly generated vector Niori 1,=1,0=)(β  

and set the constraints. In the block 8 the solvers ga (genetic algorithm) and ps (pattern search) 

search the optimal solution of the problem for the vector Niori 1,=1,0=)(β  which is generated 

in the current iteration. 

In the block 9 we evaluate the termination condition of iteration. If this condition hold 

then go to the next iteration and repeat the cycle starting with the block 6. If not, then in the block 

10 the algorithm evaluate the values of all investigated parameters in appropriate point K . 

In the blocks 11 and 12 the algorithm proceeds to the next point K  and evaluates the 

continuation condition of sensing of the points K  (different values of K ). If this condition is not 

held then appropriate functions and graphs are plotted as well as the ratio of the level of 

uncertainty of the original data and the obtained solutions is analysed (the block 13). 

In the block 14 applying the similar scheme the uncertainty of initial data in the form of 

function of K  is analysed. We use entropy as a measure of uncertainty of the data: 
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The entropy has maximum value in the case when the uncertainty is complete 

jKPPP JK 1/==== 21 K . The entropy of the data is compared with the entropy of the solutions. 

From a practical and a theoretical point it is very important to find out how the value of 
K  impact on the statistical properties of the solutions and their relation with the statistical 

properties of the original data. The algorithm presented above helps to answer these questions. 

We tested the performance of our approach for finding the cardinality constrained 

efficient frontier using publicly available test problems relating to the Hang Seng (Hong Kong) 

market index, available from OR-Library. The size of the data in 32=N  and 290=S . The 



 7

results were obtained for 150 iterations using ga solver and similar results were obtained for 300 

iterations using ps solver. 

As can be seen in Fig. 4 the level of solution uncertainty is equal to or even greater than 

the uncertainty of data before cardinality reach the level of 35-40 %, which indicates the low 

quality of the solutions obtained in this range of cardinality. At higher cardinality model gives a 

solution with a high level of certainty than in the original data. 

 

 
Fig. 4. Analysis of solution uncertainty 

 

In Fig. 5 you can see that with increasing cardinality portfolio volatility first sharply 

decreases and then increases slightly and stabilized. It means that the stability of the solutions 

obtained for the cardinality of above 40 %. 

 

 
Fig. 5. Analysis Volatility-Cardinality 
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According to the Fig. 6 skewness increase with the cardinality and asymmetry of the 

portfolio return distribution shifts to the right (positive part of the graph). Kurtosis is increasing 

with the cardinality as well and makes the top of the distribution near expected value is sharper. It 

means that uncertainty is decrease. 

 

 
Fig. 6. Analysis Skewness-Cardinality 

 

 

 
Fig. 7. Analysis Kurtosis-Cardinality 

 

The portfolio selection problem appeared a long time ago when the world financial 

market is only acquired its modern shape. Thanks to efforts of scientists, general concept of this 

problem were proposed. Since now investors use their models and measures of risk. At the same 

time, new needs appear in the market and new models and tools are required. Behavioural 
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portfolio theory which is mainly based on prospect theory is a very challenging theory and a 

model in the literature in terms of practical benefits of application and solution approaches. 

However, too many questions were not considered yet. In order to find the right place of 

behavioral portfolio models it is necessary to develop new computational approaches and to make 

fundamental researches in this area. 
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