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(Received 4 March 2014; accepted 28 January 2016; published online 18 July 2016)

The behaviourally based portfolio selection problem with investor’s loss aversion and risk aversion
biases in portfolio choice under uncertainty is studied. The main results of this work are: developed
heuristic approaches for the prospect theory model proposed by Kahneman and Tversky in 1979
as well as an empirical comparative analysis of this model and the index tracking model. The
crucial assumption is that behavioural features of the prospect theory model provide better downside
protection than traditional approaches to the portfolio selection problem. In this research the large-
scale computational results for the prospect theory model have been obtained for real financial market
data with up to 225 assets. Previously, as far as we are aware, only small laboratory tests (2–3 artificial
assets) have been presented in the literature. In order to investigate empirically the performance of
the behaviourally based model, a differential evolution algorithm and a genetic algorithm which are
capable of dealing with a large universe of assets have been developed. Specific breeding and mutation,
as well as normalization, have been implemented in the algorithms. A tabulated comparative analysis
of the algorithms’ parameter choice is presented. The prospect theory model with the reference point
being the index is compared to the index tracking model.Acardinality constraint has been implemented
to the basic index tracking and the prospect theory models. The portfolio diversification benefit has
been found. The aggressive behaviour in terms of returns of the prospect theory model with the
reference point being the index leads to better performance of this model in a bullish market. However,
it performed worse in a bearish market than the index tracking model.Atabulated comparative analysis
of the performance of the two studied models is provided in this paper for in-sample and out-of-sample
tests. The performance of the studied models has been tested out-of-sample in different conditions
using simulation of the distribution of a growing market and simulation of the t-distribution with fat
tails which characterises the dynamics of a decreasing or crisis market.

Keywords: Portfolio optimization; Behavioural finance; Prospect theory; Index tracking; Risk
modelling

JEL Classification: C61, C63

1. Introduction

The portfolio optimization problem addresses the question of
how to determine an amount (proportion, weight) of money
to invest in each type of asset within the portfolio in order
to receive the highest possible return (or utility) subject to an
appropriate level of risk by the end of the investment period.

Modern portfolio theory (MPT) began with a paper
(Markowitz 1952) and a book (Markowitz 1959) written by
the Nobel laureate Harry Markowitz. Many researchers con-
sider the emergence of this theory as the birth of modern

∗Corresponding author. Email: grishinaninapavlovna@gmail.com

financial mathematics (Rubinstein 2002). The cornerstones of
Markowitz’s theory are the concepts of return, risk and
diversification. It is widely accepted (Rubinstein 2002) that an
investment portfolio is a collection of income-producing assets
that have been acquired to meet a financial goal. However, an
investment portfolio as a concept did not exist before the late
1950s.

Remarkably, there is a long history behind the expected
utility theory (EUT) that started in 1738 when Daniel Bernoulli
investigated the St. Petersburg paradox. He was the first
scientist who separated the definitions of ‘price’ and ‘utility’
in terms of determining the item’s value. Price is an assess-
ment of an item and depends only on the item itself and its
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2 N. Grishina et al.

characteristics, i.e. price is the objective value. In contrast,
utility is subjective and ‘is dependent on the particular circum-
stances of the person making the estimate’ (Bernoulli 1954).
EUT follows the assumptions of the neoclassical theory of
individual choice in cases when risk appears. It was formally
developed by John von Neumann and Oscar Morgenstern in
their book ‘Theory of Games and Economic Behavior’ (1944)
(Neumann and Morgenstern 1944).

The theory’s main concern is the representation of indi-
vidual attitudes towards risk (Karni 2014). Since the 1950s,
several papers appeared showing that the empirical evidence on
individuals’ patterns of choice under risk are inconsistent with
the expected utility theory (Pirvu and Schulze 2012). It is also
shown (Rieger and Wang 2008) that the players’ behaviour
systematically violates the independence axiom which states
that the preference relations between 2 outcomes (lotteries)
will state the same even if each of these outcomes (lotteries)
will mixed with a third outcome (lottery) with the same prob-
ability p. Violation of this axiom is also known as ‘common
consequence’ problem. At the same time the EUT is unable to
explain many paradoxes that take place in economic practice
(for example, the Allais Paradox (Allais 1953)).

The number of EUT’s drawbacks led to the appearance of
the behavioural portfolio theory (BPT)—a new fundamental
framework which was designed to compensate for the mis-
guidings of the EUT. To date it is the best model for explaining
the behaviour of the players and investors in an experiment in
decision-making under risk. In contrast to EUT, BPT fills in
some gaps in explaining controversial economic phenomena,
such as the Ellsberg Paradox (Ellsberg 1961).

The recent financial crisis has shown the shortcomings of the
individual market instruments and the low level of validity in
investment decisions. This can be explained by the dismissive
investors’ attitude in assessing the real risks, they usually just
follow their own intuition. In investment practice, the situation
of unaccounted risks is fairly common, hence, the investors
need to have a reliable mathematical tool for justification of
investment decisions. In this paper, we consider BPT as a tool
which takes into account behavioural errors.

BPT was developed by Shefrin and Statman (2000). The
main idea of the theory is the maximization of the value of the
investor’s portfolio in which several goals are met and these
goals are considered with different levels of risk aversion. BPT
is based on two main theories: security-potential/aspiration
theory (SP/A) and prospect theory (PT). SP/A theory, estab-
lished by Lola Lopez 1987, is a general choice (not only
financial) risk framework and not specified for the portfolio
selection problem. It uses two independent criteria of choice—
overall utility and aspiration level. In our research, we focus
on the PT (Kahneman and Tversky 1979) devoted to human
behaviour in financial decision-making under uncertainty.

PT adopts the main idea from the EUT and adds in the vital
psychological components, which take into account human
behaviour in the decision-making process. It also fixes different
types of inaccuracies that took place in previously developed
behaviour-based theories, e.g the independence axiom and in-
consistency with a uniform attitude towards risk, see Shefrin
and Statman (2000).

Loss aversion is a corner stone for prospect
theory, especially for portfolio performance evaluation

(Zakamouline and Koekebakker 2009) and market price of
risk (Levy 2010). Since prospect theory was proposed many
researchers studied the loss aversion effect in asset pricing
(Barberis and Huang 2001, Lia and Yang 2013, Easley and
Yang 2015), price volatility (Yang and Wu 2011) and insurance
(Wang and Huang 2012) very successfully. As far as we aware,
despite many papers devoted to PT, few researchers have inve-
stigated the portfolio selection problem with prospect theory
and index tracking in terms of diversification and return per-
formance. We also have compared the prospect theory model
with index tracking to the original index tracking model.

The goal of this paper is to identify potential benefits of
behaviourally based prospect theory model depending on dif-
ferent market situations in comparison with traditionally
accepted portfolio optimization model such as index tracking
(IT) model. In this paper, we apply the PT model to several
empirical and experimental data-sets in order to find an op-
timal solution to the portfolio selection problem with index
tracking settings. In order to do so we develop appropriate
solution approaches to prospect theory namely genetic algo-
rithm and differential evolution algorithm which take into ac-
count mathematically complexity of the researched problem.
We also test the results out-of-sample and compare the perfor-
mance of the PT model with the results obtained by the index
tracking model. We investigate these models performance also
with a cardinality constraint. The main contribution of our
work is large-scale computational results using metaheuristics
obtained for the prospect theory portfolio selection problem for
data from various financial markets, with the asset universe of
each ranging from 31 assets to 225 assets.

2. Literature review

Prospect theory is a behavioural economic theory that
describes decisions between alternatives that involve risk,
where the probabilities of outcomes are known. It was
developed as a descriptive model of decision-making under
uncertainty by two psychologists, Daniel Kahneman andAmos
Tversky, and published in the Econometrica in 1979 (Kah-
neman and Tversky 1979). The authors relied on a series of
small experiments to identify the manner in which people make
choice in the face of risk. The theory says that people make
decisions based on the potential value of losses and gains rather
than the final outcome, and that people evaluate these losses
and gains using heuristics. Although the original formulation
of prospect theory was only defined for lotteries with two non-
zero outcomes, it can be generalized to n outcomes. Generaliza-
tions have been used by various authors Schneider and Lopes
(1986), Camerer and Ho (1994), Fennema and Wakker (1997),
Vlcek (2006).

The original PT choice process consists of two phases. Dur-
ing the first phase, which is called editing, an agent defines
their own (subjective) meaning of a gain and a loss by setting
a reference point r0 for the portfolio return, which represents
zero gain (or zero loss) for this particular person. During the
second stage, which is called the evaluating phase, our investor
calculates the values of the prospect theory utility based on
the potential outcomes and their respective probabilities, and
chooses the maximal one.
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Prospect theory–based portfolio optimization 3

To understand the features of prospect theory let us anal-
yse two approaches to the portfolio selection problem which
are traditional (MPT) and behavioural (behavioural portfolio
theory). We focus more on the assumptions underlying these
theories which govern the investor’s choice.

MPT uses several basic assumptions namely ‘rational
investor’, normal distribution of asset returns and neglection
of transaction costs (Markowitz 1959). At the same time it
was shown that in real-life market conditions, these assump-
tions are not valid (Mandelbrot 1963, Fama 1968, Evans and
Archer 1968, Fisher and Lorie 1970, Jacob 1974, Szego 1980,
Patel and Subrahmanyam 1982, Sengupta and Sfeir 1985, Peng
et al. 2008, Das et al. 2010).

The mean variance model which exists in the MPT frame-
work is both sufficiently general and static for a significant
range of practical situations and at the same time it is simple
enough for theoretical analysis and numerical solution. This
benefit provides widely use of the mean variance model in
practice all over the world. However, the portfolio selection
problem becomes even more complicated in modern economic
conditions which demand more flexible and multi-factor mod-
els and tools to satisfy the investor’s preferences, while MPT’s
assumptions lead to some serious limitations.

The question about the difference and ratio between the port-
folio allocation according to mean variance optimization and
prospect theory utility function optimization is very challeng-
ing in the literature. Many scientists attempt to conceptualize
the benefits and drawbacks of each approach depending on
specific market situations, data and assumptions. There are
several reasons why it is not easy to compare MPT and prospect
theory approaches.

The first obstacle can be called computational difficulties.
Due to the fact that the PT model is very complex from a
computational (solution approach) point of view, only simple
cases for the analysis are available in the literature. For exam-
ple, many researchers used only 2–3 assets to get the portfolio
allocation based on prospect theory (Kahneman and Tversky
1979). However, it is not enough for rigorous comparative
analysis.

The first effort to compare two models was made by Levy
and Levy Levy and Levy (2004). The idea was to select the
portfolio with the highest prospect theory utility among the
other portfolios in the mean variance efficient frontier. Fol-
lowing this route Pirvu and Schulze in 2012 present results
confirming that an analytical solution is mostly equivalent to
maximising the PT objective function along the mean variance
efficient frontier (Pirvu and Schulze 2012).

The next step in development was connected with applica-
tion to general return distributions. The attempts started with
an application to a market with two assets available: one of
them is the risk-free and the other is a risky asset. As a compu-
tational approach for the problem, the piecewise-power value
function is considered. Originally this method was suggested
by Tversky and Kahneman Tversky and Kahneman (1992).
Gomes in 2005 applied this idea to prospect theory (Gomes
2005). For more information about the piecewise-quadratic
approach to PT see Hens and Bachmann (2008), Zakamouline
and Koekebakker (2009). Many researches propose a heuristic
approach as an effective tool for dealing with non-convex
problems (Maringer 2008).

Metaheuristic approach is very popular method for solving
the portfolio selection problem, in a constrained formulation
which is NP-hard and difficult to be solved by standard opti-
mization methods (Gaspero et al. 2011, di Tollo 2015).Adebiyi
Ayodele and Ayo Charles used metaheuristics method of gen-
eralized differential evolution three in order to solve extended
Markowitz mean variance portfolio selection model consists
of four constraints: bounds on holdings, cardinality, minimum
transaction lots and expert opinion (Ayodele and Charles 2015).
Other researches devoted to using metaheuristics for solving
constrained portfolio selection problem see in the following
sources Lin and Wang (2002), Lin and Liu (2008), Dueck and
Winker (1992).

In this paper, we propose two heuristic approaches to the
prospect theory portfolio selection problem: the differential
evolution algorithm and the genetic algorithm. A recent
addition to the class of evolutionary heuristics is proposed
by Storn and Price 1997, Price et al. (2005) which is based
on the evolutionary principle using differential weight (F) as
a mutation factor. This solution approach has been used by
Maringer (2008) who studied PT investor’s risk aversion and
loss aversion using higher order moments such as skewness and
kurtosis. To best of our knowledge he was the first researcher
who adopted this algorithm to the behaviourally based opti-
mization problem.

Agenetic algorithm is a searching mechanism which is based
on evolutionary principles of natural selection and genetics.
The theoretical background of genetic algorithms was devel-
oped by Holland. It works with populations of solutions and
uses the principles of survival of the fittest. In genetic
algorithms the variables of the solution are coded into chro-
mosomes (Holland 1975). To make a natural selection and
get good solutions, chromosomes are evaluated by a fitness
criterion. In the considered optimization problems the mea-
sure of fitness is usually connected with the objective function
(Mitchell 1996, Beasley 2002, Aarts et al. 2003). As far as we
are aware, the genetic algorithm has not been applied to the
prospect theory problem.

Later several approaches to get computational results for
the prospect theory utility function optimization were devel-
oped (Levy and Levy 2004, Pirvu and Schulze 2012). Then
the question about which data should be used arose. Most of
the researches are based on normally distributed testing data
(Levy and Levy 2004). At the same time it is well known
that many asset allocation problems involve non-normally dis-
tributed returns since commodities typically have fat tails and
are skewed (Mandelbrot 1963, Fama 1968). Therefore, in our
research we obtain and test the optimal portfolios on several
sets of data including data with a t-distribution and bearish
market data.

According to the problem formulation and theoretical
basis the mean variance model manages the risk of the port-
folio taking into account the covariance matrix and standard
deviation of assets. Modern portfolio theory and the work of
Harry Markowitz on diversification and risk of a portfolio
established the capital asset pricing model (CAPM) which
distinguishes two types of portfolio risk: systematic and unsys-
tematic. Systematic risk is considered as a market risk, i.e. it
is undiversifiable and common for all assets in the market,
while unsystematic risk is associated with each security. In
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4 N. Grishina et al.

terms of CAPM the optimal portfolio which aims to achieve
the lowest risk together with any possible return is the market
portfolio which, in fact, could be a market index. Following the
assumption of CAPM the index tracking problem for portfolio
selection is a replication of the ‘ideal’market portfolio in order
to reduce unsystematic risk.

Index tracking, known as a form of passive fund manage-
ment, aims to produce optimal portfolios which replicate the
index dynamics providing a balance between risk and return.
However, the index tracking model normally includes almost
all available assets in the market that leads to large transaction
costs and a portfolio which is very difficult to manage because
of its diversity (Beasley et al. 2003). Thus, the cardinality con-
strained index tracking model is also considered in this paper.
We explore this model in comparison with behaviourally based
model (the prospect theory model) in terms of diversification
and tracking error (TE) issues.

Generally speaking, MPT uses a model that attempts to
describe how capital markets operate, not a recipe for designing
investment portfolios. Curtis in his paper ‘MPT and Behavioral
Finance’ assumed that MPT ‘is very useful, but it is descrip-
tive, not prescriptive, and relies on assumptions that may not
always be valid’ (Curtis 2004). It is a very limited theory in
terms of application to the real economic world conditions
(Shefrin and Statman 2000, Shefrin 2001). In contrast, BPT
gives us flexibility and range of tools such as natural investor
preferences (risk aversion, loss aversion, etc.) which provide
an opportunity to investigate and to adjust risk component in
portfolio selection more deeply and precisely.

3. Problem formulation

In this section, we formulate the index tracking and the prospect
theory with index tracking models with cardinality constraint.

First we set out some general notation that we use for all of
our models. In this section and in the rest of the paper, we will
use the following notation:

N—number of assets,
S—number of scenarios (time periods),
K—cardinality limit (desirable number of assets in the
portfolio),
ps—probability of scenario s,

∑
s ps = 1,

r̄i —mean return of asset i,
ris—return of asset i in scenario s, i = 1, . . . , N ,

s = 1, . . . , S,
r0—reference point,
ωi ≥ 0—weight of asset i in the portfolio,
x = (ω1, . . . , ωN )—a portfolio and

∑N
i=1 ωi = 1,

X = {x = (ω1, . . . , ωN ) ∈ R
N+}—set of all portfolios,

rs(x)—return of portfolio x in scenario s,
d—desirable level of return.

It should be noted that one can transfer these models with a
cardinality constraint into the basic models if we put K = N .
For the sake of simplicity we can use a unified formulation for
both, basic and cardinality constrained models.

3.1. Index tracking model

In our research we use a simple index tracking model in the
form of full replication as we are minimizing the TE in order to

reduce the difference between the index return and the portfolio
return.

Let at time s

rms – index return,
os = max(rs(x)−rms, 0) – portfolio return amount over
the index return,
us = max(rms − rs(x), 0) – portfolio return amount
under the index return.

TE for a given time period is equal to |rs(x) − rms |. Clearly,
at time s at least one of os or us is equal to 0, i.e. we can define
a new quantity

TEs = os + us =
{

os, ifos ≥ 0,

us, otherwise.
(1)

Let us define the TE in the simplest possible way: as the
difference between the index and portfolio returns over all time
periods s = 1, . . . , S:

TE =
S∑

s=1

TEs . (2)

Here, we would like to mention that TE can be defined in
different ways, for example, in Roll (1993) the TE is defined
as the root mean square of the difference between index and
portfolio returns.

As was mentioned previously we can use the formulation of
the cardinality constrained model for the basic model as well
when we put K = N . Then the index tracking problem with
cardinality constraint can be formulated as (Reilly and Brown
2005):

minimizeITcc(x) = minimizeTE(x) =
S∑

s=1

(os + us), (3)

subject to the constraints

N∑
i=1

ωi ris = rms + os − us, s = 1, . . . , S (4)

N∑
i=1

ωi = 1, (5)

liϕi ≤ ωi ≤ uiϕi , i = 1, . . . , N , (6)
N∑

i=1

ϕi ≤ K , (7)

ϕi ∈ {0, 1}, i = 1, . . . , N , (8)

ωi ≥ 0, i = 1, . . . , N , (9)

os, us ≥ 0, s = 1, . . . , S. (10)

Equation (4) checks the difference between returns of the
optimal portfolio and the index for each time period. Constraint
(5) imposes that the investment weights sum to one (budget
constraint). Inequality (6) describes a buy-in threshold and
restricts asset investment. It is easy to see that if an asset i
is not held, i.e. ϕi = 0, then the corresponding weight ωi = 0.
If an asset i is held, i.e. ϕi = 1, then (6) ensures that the value
of ωi lies between the appropriate lower and upper limits, li
and ui , respectively (Woodside-Oriakhi et al. 2011). Inequality
(7) ensures that the number of assets in the optimal portfolio is

D
ow

nl
oa

de
d 

by
 [

N
in

a 
G

ri
sh

in
a]

 a
t 0

5:
34

 2
0 

Ju
ly

 2
01

6 



Prospect theory–based portfolio optimization 5

Figure 1. Prospect theory value function v(r) with α = β = 0.88
and λ = 2.25.

at most K . The binary definition (8) reflects the inclusion (or
exclusion) of an asset in the portfolio.

3.2. Prospect theory model for index tracking

Consider the game:

(r1, p1), (r2, p2), . . . , (r0, p0), . . . ,

× (rS−1, pS−1), (rS, pS), (11)

where (rs, ps), s = 1, 2, . . . , 0, . . . , S − 1, S, means that the
gambler wins rs with probability ps , of course, the sum of
all probabilities is equal to 1, i.e.

∑S
s=1 ps = 1; r0 denotes

some numerical boundary called the reference point (constant)
which depends on the investor’s preference. Let rs define the
outcomes of the game (11) such that:

• if s = 0, i.e. rs = r0, then the investor’s gain is 0,
• if s > 0, then rs > r0, hence the investor won from this

investment,
• if s < 0, then rs < r0, hence the investor lost.

According to the prospect theory one needs to make additional
mental adjustments in the original probability and outcome
value functions p and r, which is equivalent to replacing a
standard utility function by the prospect theory utility function.
In order to do so we transform the original p and r into the
prospect theory probability weight function π(p) and value
function v(r).

The prospect theory probability weighting function π(p)

measures, according to Kahneman and Tversky (1979), ‘the
impact of events on the desirability of prospects, and not merely
the perceived likelihood of these events’, i.e. expresses the
weights of the decisions to the probabilities. Let us mention
that π(p) is an increasing function, π(0) = 0, π(1) = 1, and
for very small values of probability p we have π(p) ≥ p.
The probability weighting function based on the observation
that most people tend to overweigh small probabilities and
underweigh large probabilities.

The prospect theory value function v(r) describes the
(behavioural) value of the gain/loss outcome. Kahneman and
Tversky experimentally obtained the value function which was
dependent on the initial value deviation. This function is usu-
ally asymmetric with respect to a given reference point r0
(which reflects different investor’s attitude to gains and losses),

it is concave upward for gains and convex downward for losses.
Moreover, generally the value function v(r) grows steeper for
losses than for gains, i.e. for s > 0 we have v(rs) ≤ −v(r−s).

The explicit formula for the prospect theory value function
v(r), given in Tversky and Kahneman (1992), is:

v (r) =
{

(r − r0)
α, if r ≥ r0,

−λ(r0 − r)β, if r < r0,
(12)

where α = β = 0.88 are risk aversion coefficients with respect
to gains and losses accordingly, λ = 2.25 is the loss aversion
coefficient which underlines differences in the investor‘s per-
ception of gains and losses. We note that the value function (12)
is non-linear with respect to return r and, hence, the portfolio
variable x. Figure 1 contains the graphs for the value function
v(r).

The prospect theory utility function can be written in terms
of π and v as:

PTU =
S∑

s=1

π(ps)v(rs) =
S∑

s=1

psv

(
N∑

i=1

rsiωi

)
. (13)

Clearly, the formula (12) consists of two parts. The part in the
gain domain (i.e. when r ≥ r0) is concave and the part in the
loss domain (i.e. when r ≤ r0) is convex, capturing the risk-
averse tendency for gains and risk-seeking tendency for losses
as seen by many decision-makers (Rieger and Wang 2008). Let
as mention, that for the sake of simplicity in our study we use
π(p) = p. Clearly, the prospect theory utility function (13) is
a non-linear function.

The prospect theory model aims to find the best (optimal)
portfolio which maximizes the prospect theory utility function
where decision variables are weights of available assets ω

subject to constraints on a desirable level of return (in the
case of basic prospect theory problem formulation), budget and
short sales. This is a non-linear and non-convex optimization
model as the objective function is non-linear and non-convex.
In order to solve this problem we use heuristics which are an
inexact solution approach.

According to the prospect theory portfolio selection problem
looks as follows (basic prospect theory model):

maximizePT(x) =
S∑

s=1

psv

(
N∑

i=1

rsiωi

)
, (14)

subject to the constraints

r̄(x) =
N∑

i=1

r̄iωi ≥ d, (15)

N∑
i=1

ωi = 1, (16)

ωi ≥ 0, i = 1, . . . , N . (17)

Studying the prospect theory problem we found that the
principle of the model is very similar to that of the index
tracking portfolio optimization problem. The main common
feature is that behaviourally based models use a reference point
as the limit for desired level of returns in each time period
similar to an index tracking model which uses the index as a
reference point. Thus it is easy to implement the idea of the
index tracking problem into prospect theory by changing the
value of the reference point. In this case, we let r0 be a vector
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6 N. Grishina et al.

of the index value for each time period of the data-set not a
scalar as it is in the original version of the prospect theory. We
also remove the limit on the desirable level of returns similar to
the index tracking problem which focuses on the index value
as a level of return for each time period. We call this model
prospect theory with index tracking (PT with IT).

We also implemented a cardinality constraint in this model
to address the issue of too diversified a portfolio. It is very
interesting to compare not only the IT and PT with index track-
ing problems but these models with the limit on the number
of the assets in the portfolio. We formulate the prospect theory
model with index tracking and with a cardinality constraint as:

maximize PT+ ITcc(x) =
S∑

s=1

psv

(
N∑

i=1

rsiωi , rms

)
, (18)

subject to the constraints

N∑
i=1

ωi = 1, (19)

liϕi ≤ ωi ≤ uiϕi , i = 1, . . . , N , (20)
N∑

i=1

ϕi ≤ K , (21)

ϕi ∈ {0, 1}, i = 1, . . . , N , (22)

where

v (r(x), rms) =
{

(r(x)− rms)
α, if r(x) ≥ rms,

−λ(rms − r(x))β, if r(x) < rms .

(23)

As one can see in equation (23) the value function for the pro-
sect theory model with index tracking is defined as a dynamic
not constant due to the fact that instead of a constant reference
point r0 here we use a dynamic index rm which takes different
values in each scenario (time period).

4. Solution approach for the prospect theory model

In the previous chapter, we considered two basic models: index
tracking and prospect theory with index tracking models. The
index tracking problem is mixed-integer linear problem and
can be solved easily with a built-in solver. For the IT (also
with cardinality constraint) in our empirical study we use the
standard solver CPLEX (AMPL) which is developed to deal
with integer, mixed-integer, linear programming and quadratic
problems, including problems with quadratic constraints possi-
bly involving integer variables. In contrast, the prospect theory
model is non-convex. Hence, the solution approach becomes
more challenging.

It is important to note that problem (18)–(22) is non-convex
and function (18) is non-differentiable. In addition, we consider
the cardinality constrained PT with IT model which potentially
makes the problem more complex for solving. This complexity
of the researched problem does not allow the use exact methods
due to the increasing CPU time and restrictions of size of
reasonable data-sets. As long as it is very difficult to find an
optimal solution for this type of problem many researchers and
traders use heuristics that are inexact methods to solve this sort
of portfolio optimization problems.

In our research, we use two heuristic solution approaches
for the cardinality constrained portfolio optimization prob-
lem with behavioural component. The first is based on the
differential evolution algorithm proposed by Storn and Price
(1997), Price et al. 2005) and adopted to the prospect theory
model by Maringer (2008). In the development of paper
(Chang et al. 2009), we suggest the genetic algorithm as the
second approach to the researched problem which is based on
meta-heuristic approach (Holland 1975) in order to find the
‘optimal’ solution for the prospect theory with index tracking
cardinality constrained portfolio optimization problem.

It should be noted that we also tried to use tabu search
and pattern search methods (in Matlab) and have to refuse the
results due to the fact that found optimal portfolios by these
algorithms consists only of 1 or 2 assets among 31 available.
These portfolios do not appear to be interesting for real-market
conditions and strategies.

For the sake of simplicity in our calculations we define the
prospect theory weighting function as π(p) = p and use
the original value function v(r) as proposed in Tversky and
Kahneman (1992) using dynamic reference point rm as defined
in (23).

4.1. Differential evolution algorithm

Let N be the number of all available assets. We need to find an
optimal value of a uniformly distributed variable
x = (ω1, ω2, . . . , ωN ) ∈ D ⊆ R

N , where D is a set of feasible
objective function values, i.e. we are looking for the value of
x ∈ D, which provides a solution for the problem (18). In order
to find this optimal value of x we need to maximize the value
of PT+ ITcc(x) (which is equivalent to PT+ IT(x) if K = N )
using the following steps.

1. Initialization. We define the set

DK =
{v∈D, such that exactlyK components of vectorvare positive}.
Let P ∈ N. We generate an initial population xi = (ωi1, . . . ,

ωi N ), ∀i = 1, . . . , P2xi ∈ DK .
2. Mutation and crossover.At each generation g = 1, . . . , G

let take xi and choose vectors xa , xb, xc randomly from the
population’s vectors xl , l = 1, . . . , P2, such that they do not
coincide with xi and each other. Also pick a random num-
ber R ∈ {1, . . . , N }. We construct the components of a new
vector x̃i ∈ D as follows. With probability C R and if R =
j, j = 1, . . . , N , for the j th component, we assume x̃i j =
vaj + (F + z1)(xbj − xcj + z2) and x̃i j = xi j otherwise.
Here, parameters F ∈ [0, 2] and CR ∈ [0, 1] are called the
differential weight and the crossover probability, respectively,
and should be chosen by the user; quantities z1 and z2 are
either zero with a low probability (e.g. 0.0001 and 0.0002,
respectively), or are normally distributed random variables
with a mean of zero and a small standard deviation (for example
0.02). The parameters z1 and z2 are optional for the differential
evolution algorithm. They are used to add up some ‘noise’ to
the calculation of the resulting vector and avoid getting into
local extrema.

3. Selection. Using equation (18) we calculate the values
PT + ITcc(xi ) and PT + ITcc(x̃i ) and choose the maximum
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Prospect theory–based portfolio optimization 7

called max(xi ) to proceed to the new population which is used
in the next generation until the stopping criteria (e.g. number
of generations, precision, etc.) is met.

4. Final Assessment. In the last generation g = G find
the vector which yi = {xi |max{PT + ITcc(x1), . . . , PT +
ITcc(xP2)}. The vector yi then is our best solution (Homchenko
et al. 2013).

Pseudo-code of the differential evolution algorithm for
prospect theory utility function maximization is given below.

Generate initial population xi ∈DK ,i = 1, . . . , P2,

cycle of G generations
for each xi in population P
choose 3 random vectors xa �= xb �= xc �= xi

for each component j of xi do
with probability π1 : z1 ← N (0, σ1),
else z1 = 0
with probability π2 : z2 ← N (0, σ2),
else z2 = 0
pick u j ∼ U (0, 1)

if u j < CR or j = R
then x̃i j = xaj + (F + z1)

(xbj − xcj + z2)

else x̃i j = xi j
if PT + I T (x̃i ) > PT + I T (xi )

then ỹi = x̃i
else ỹi = xi

In g = G find yi = {ỹi |max{PT+ ITcc(ỹ1), . . . , PT+
ITcc(ỹP2)}}.

4.2. Genetic algorithm

To maximize the objective function or utility function PT +
ITcc(x) given in formula (18) using a genetic algorithm we
need to make the following steps.

1. Initialization. We define the set

DK

= {x ∈D, such that exactlyK components of vectorx

are positive}.
Let P ∈ N. We generate an initial population xi = (ωi1, . . . ,

ωi N ), ∀i = 1, . . . , P2xi ∈ DK .
2. Selection. At each generation g = 1, . . . , G we calculate

values
PT+ ITcc(x1), . . . , PT+ ITcc(xP2) and put them in decreasing
order, i.e. we obtain a decreasing sequence(

PT+ ITcc(xm1) ≥ . . . ≥ PT+ ITcc(xm P2 )
)

,

where set xm1 , . . . , xm P2 is a permutation of the initial set
x1, . . . , xP2 . We fix the maximum value of the objective func-
tion maxPT+ ITcc(xi ). Only the first 2P elements move to the
new population without changes, i.e. xm1 , . . . , xm2P . Denote
this elements of a new population y1, . . . , y2P .

3. Crossover. We randomly choose two vectors x̃ j and x̂k in
the set {xm2P+1 , . . . , xm P2 } and breed them to produce a ‘child’.
In order to do this we construct the l-th element (l = 1, . . . , N )
of the new vectors ai = (ai1, . . . , ai N ), i = 2P + 1, . . . , P2,
ai ∈ DK , from vectors x̃ j and x̂k , ∀ j, k = 2P + 1, . . . , P2,
by choosing between x̃ jl and x̂kl following the rules:

• if x̃ jl = ω j > 0 and x̂kl = ωk > 0 (i.e. the asset is in
both parents portfolios), than the asset in the child is as
follows ail = χ ·ω j + (1−χ) ·ωk , where χ is randomly
generated number in [0, 1];
• if x̃ jl = 0 and x̂kl = 0 (i.e. the asset is not in either parent

portfolios), than ail = 0 (this asset is not in the child);
• if x̃ jl = ω j > 0 and x̂kl = 0 (i.e. the asset is in only one

of the parent portfolios), than with probability π ail = ω j

(i.e. this asset is included in the portfolio with probability
π ).

Although there are lots of other crossover operators known
in the literature (Haupt and Haupt 2004, Cormen et al. 2010,
Abdoun and Abouchabaka 2011) our implementation and test-
ing of the genetic algorithm approach with developed crossover
stage (specially adjusted for prospect theory portfolio selection
problem) have shown good convergence and improvement of
the solution in each generation. Neither divergence nor cyclic
errors has been detected during the algorithm’s progress. A
simple approach provides appropriate CPU time, convenient
pseudo-code and programme code which is flexible enough to
play with parameters and conditions of the models.

4. Mutation. To introduce mutation we change each element
of the constructed vector ai with a given small probability
ζ > 0 for the randomly generated number from [0,1]. Then
we ensure that the number of non-zero elements of the new
vector is less than or equal to K and normalize the elements
of this vector. Doing empirical experiments, we have noticed
that genetic algorithm choose not too diversified portfolios and
very rare the number of assets in the chosen portfolios exceed
cardinality constraint much. So, if in some cases the cardinality
constraint condition is broken, we randomly choose non-zero
elements of the vector one by one in order to make it zeros till∑N

i=1 ϕi ≤ K . After checking the K condition we normalize
the vector.

We also find the maximum of the vectors ai , x̃ j , x̂k and
denote this as yi . This is the most fit vector and now move this
to the new population. Continue while the last yP2 element of
the new population matrix have been processed.

5. Assessment. We calculate the values PT + ITcc(y1), . . . ,

PT + ITcc(yP2) and compare the maximum values of the
obtained objective function maxPT + ITcc(yi ) to maxPT +
ITcc(xi ).The new population proceeds to the new generation (if
g < G) if and only if maxPT+ ITcc(yi ) ≥ maxPT+ ITcc(xi ).

6. Final Assessment. In the last generation g = G find the
vector y∗i = {yi |max{PT + ITcc(y1), . . . , PT + ITcc(yP2)}.
The vector y∗i then is the best solution.

Pseudo-code of the genetic algorithm for prospect theory
utility function maximization is given below.

Generate initial population xi ∈DK ,i = 1, . . . , P2,

cycle of G generations
calculate values PT+ITcc(x1), . . . , PT+ITcc(xP2)

sort PT+ ITcc(xm1) ≥ . . . ≥ PT+ ITcc(xm P2 )

save maxPT+ ITcc(xi )

xm1 , . . . , xm2P = y1, . . . , y2P
proceed to the next generation

randomly pick x̃ j and x̂k in the set
{xm2P , · · · , xm P2 }
∀i, j, k, l, i, j, k = 2P + 1, . . . , P2,l = 1, . . . , N

if x̃ jl = ω j and x̂kl = ωk
then ail = χ · ω j + (1− χ) · ωk,
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8 N. Grishina et al.

χ ∈ U (0, 1)

else if x̃ jl = 0 and x̂kl = 0
then ail = 0

else if x̃ jl = ω j and x̂kl = 0
then with πail = ω j

with mutation probability ζ > 0
ail ← âi j, âil ∈ U (0, 1)

choose max{PT+ ITcc : yi ∈ {ai , x̃ j , x̂k}}
find PT+ITcc(yi ) = max{PT+ITcc(y1), . . . , PT+ITcc(yP2)}
choose PT+ ITcc(y∗i ) = max{maxPT+ ITcc(yi ), maxPT+

ITcc(yP2)}
y∗i is an optimal solution

5. Computational investigations

5.1. Data

We have solved the portfolio optimization problems using pub-
licly available data relating to five major market indices, avail-
able from the OR-Library (Beasley 2003). The five market
indices are the Hang Seng (Hong Kong), DAX 100 (Ger-
many), FTSE 100 (UK), S&P 100 (USA) and the Nikkei 225
(Japan) for 290 time periods each (weekly data), taken from:
http://people.brunel.ac.uk/mastjjb/jeb/orlib/portinfo.html. All
of these problems were considered previously by Chang et al.
(2000) and Woodside-Oriakhi et al. (2011). The size of these
five test problems ranged from N = 31 (Hang Seng) to N = 225
(Nikkei 225) and are presented in table 1.

The data used in this paper is given in the form of matrices of
asset prices. We transformed the original data-sets into matrices
of asset log returns. It is widely accepted to use logarithm of
the price ratio in order to derive the rate of returns, instead
of using absolute asset price relations (Morgan 1996). In our
research, the rate of return r is calculated using the prices p for
each time period s as follows:

ri = ln

(
pis

pis−1

)
, i = 1, . . . , N , s = 1, . . . , S,

where N is the number of assets and S is the total number of
time periods.

In this research, we apply simulation of the data with a
particular type of distribution as an out-of-sample test data
for our models. We are interested in so called ‘bullish’ market
dynamics which indicates the investor’s confidence that the
positive trend of the prices will continue. It also characterizes
increasing investments and high activity of exchange trades
which follows from a stable economic situation. In contrast a
‘bearish’ market demonstrates pessimistic expectations which
leads to stagnation and long-term decreasing of the prices. In
order to investigate the performance of the models in different
conditions we simulate these two trends in the matrix of the
asset returns.

Table 1. Test problem dimension.

Data-set Number of stocks N Number of time periods S K

1 Hang Seng 31 290 15
2 DAX 100 85 290 20
3 FTSE 100 89 290 25
4 S&P 100 98 290 25
5 Nikkei 225 225 290 25

The out-of-sample data-set which simulates bullish and
bearish markets were obtained using the built in functions
available in the Statistics Toolbox in Matlab. For bullish market
simulations we apply the function datasample. This function
y = datasample(data, k) returns k observations sampled
uniformly at random, with replacement, from the specific data-
set in data. In order to obtain the data-set which possesses
properties of a bullish market we simulate the returns based
on historical data of market growth (data from 4.01.2005 to
30.12.2005; 252 time periods in total).

Bearish market simulations are made using the command
mvtrnd. The statement r = mvtrnd(k R, d f, cases) returns
a matrix of random numbers chosen from the multivariate t-
distribution, where k R is matrix of historical returns from the
crisis period, d f is the degrees of freedom (in our computa-
tional study d f = 5) and it is either a scalar (like we use in
this research) or could be a vector with cases elements (case is
the number of lines, equal to 100 for these tests). We chose a
t-distribution because the tails of a Student t-distribution tend
to zero slower than the tails of the normal distribution which
reflects more the real market situation. For the simulations of
bearish market we used historical data related to the FTSE 100
index of the global crisis period in 2008 available in Bloomberg
Database (data from 1.01.2008 to 31.12.2008; 261 time periods
in total) as an initial matrix for simulation. So we apply both,
crisis historical data as a sample of data and a t-distribution
simulation in order to underline the contrast in two different
types of return distributions, bullish and bearish.

The index tracking portfolio selection problem (basic for-
mulation and with cardinality constraints) were solved using
AMPL software with CPLEX (version 12.5.1.0) as a software
package for solving large-scale optimization problems. The
prospect theory with index tracking portfolio selection problem
(without and with cardinality constraints) were implemented
using Matlab software, as well as built-in and specially devel-
oped functions.All simulations were run in Matlab. The system
runs under MS Windows 7 64-bit SP1 and in our computational
work we used an Intel Core i3-2310M pc with a 2.10 GHz
processor and 8.0 GB RAM.

5.2. Parameters of the models

For the basic prospect theory model (also with index tracking
and with cardinality constraints) we use constant values of
the parameters λ = 2.25, α = β = 0.88 as proposed by
Tversky and Kahneman in their paper (Tversky and Kahneman
1992). Tversky and Kahneman consider prospect theory as a
complex choice model. Estimation of such types of problems
is very difficult because of the large number of parameters. In
order to reduce this number they ‘focused on the qualitative
properties of the data rather than on parameter estimates and
measures of fit’ (Tversky and Kahneman 1992) using a non-
linear regression procedure for estimation of the parameters
of equation (12), they found that ‘the median exponent of the
value function was 0.88 for both gains and losses, in accor-
dance with diminishing sensitivity’and ‘the median λ was 2.25’
(Tversky and Kahneman 1992).

We used K as a parameter for cardinality constrained models
as shown in table 1. These models according to its formulation
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Prospect theory–based portfolio optimization 9

have lower and upper limits on the asset weight. We use li =
0.01 and ui = 1 for these limits.

5.3. Parameters of the heuristic approaches

Previously we note that prospect theory model (also with index
tracking) is mathematically complex problem and therefore
it is difficult to deal with. In section 2, we proposed differ-
ent solution approaches to this model. In order to obtain an
‘optimal’ solution for the behaviourally based model (basic
formulation and with index tracking) we use a differential
evolution algorithm and a genetic algorithm.

It is known that the parameters of heuristics and metaheuris-
tic algorithms have a great influence on the effectiveness and
efficiency of these algorithms (Akbaripour and Masehian 2013).
It is important to find correct parameter settings for each prob-
lem and data-set. To obtain the best solution for the problems
we illustrate this here with the algorithms using the first data-
set (Hang Seng) trying to choose the most appropriate value for
each parameter and analyse the effectiveness of each algorithm
in order to define the best for our research. We tested effective-
ness of both algorithms applied to basic prospect theory prob-
lem (14)–(17). The analysis and selection of the parameters for
the chosen algorithm for the other sets of data are presented in
Appendix 1.

Our choice of parameter is based on three comparison cri-
teria: computational time, utility as the value of the objec-
tive function PT(x) and range of PT(x) as a difference ξ =
max PT(x) − min PT(x). In order to study the stability of the
algorithm we test each combination of parameters 10 times and
compare mean CPU time, mean utility and ξ in the form of the
difference max PT(x)−min PT(x).

The optimal solution of the prospect theory problem is typ-
ically unknown and we have no benchmark for comparative
analysis. So we define the optimal solution to be the best in the
set of solutions we have obtained in our tests.

Much research has been devoted to using heuristic
approaches as an effective tool for dealing with non-convex
problems. Maringer in 2008 presented a comparative analysis
of quadratic, power and the prospect theory utility function
performance with different levels of loss aversion (Maringer
2008). He used a differential evolution approach in order to get
a solution for the prospect theory model. The paper focused
more on performance of the models and parameters of the
optimal portfolio return distribution but not on the solution
approach itself.

To the best of our knowledge there are no studies where
the genetic algorithm has been applied to the prospect theory
problem. From the mathematical point of view it is interesting
to investigate the performance of different solution approaches
applied to problem (14)–(17) also with additional constraints
and index tracking modification which is non-convex and func-
tion (14) which is non-differentiable.

Differential evolution algorithm
The differential evolution algorithm efficiency depends on

parameters such as the differential weight F , the crossover
probability CR, the population size P and the number of gen-
erations G. It is necessary to start with the F parameter because
the differential weight is the key parameter for the differential
evolution algorithm. As we noticed this value significantly

influences the mean value of the objective function and its
dispersion. It is known that F ∈ [0, 2] (see section 4.1), how-
ever, in our case a value larger than 1 gives us a very unstable
solution. Thus, we define the following values to test: 0.05,
0.15, 0.5 and 0.95. In the calculations shown in table 2 for
our specific function, the smaller the value of the differential
weight the higher the value of objective function (utility) and
the smaller the range of the solution (ξ = 0 leads to the best
quality of the solution). The value 0.05 gives us the best results
according to all three criteria.

It should be mentioned that in choosing parameter F = 0.05
we set CR = 0.5, P = 20 and G = 100. This choice is based
on preliminary analysis and recommendations available in the
literature (Price et al. 2005, Feoktistov 2006). Hereinafter,
while testing each parameter one by one we fix the values
of other parameters (F = 0.05, CR = 0.5, P = 20 and
G = 100) in order to show the difference in the results. In
table 2 and further tables the chosen best parameters indicated
in bolt font.

The next step is to choose the optimal value for the crossover
probability. It is known that the CR ∈ [0, 1] (see section 4.1).
We analyse three values for CR = 0.3, 0.5, 0.8. The results in
table 2 confirms that CR = 0.5 provides an acceptable CPU
time (better than CR = 0.8) and a stable utility (better than
CR = 0.3) which leads to a stable solution.

The parameters F and CR should be chosen for the specific
objective function and features of the problem. In contrast,
the values of G and P primarily depend on the size of the
problem. For example, for a data-set with 31 assets we define
values for G and P , so, for larger scale problems we use values
in proportion to the best we find here. We consider the values
of these parameters as a function of problem size. We now
explain the choice of these parameters only for the smallest
data-set Hang Seng.

We test values P = 15, 20, 25 in order to define suitable
parameters in terms of CPU time and optimality of the solution.
As one can see in table 2 the population size of 20 provides
the best utility (quantitatively and in terms of stability) with
reasonable computational time. The value P = 25 requires
more time (+35.6 s) compared to P = 20, providing the same
utility while a smaller population size leads to an unstable
solution.

Within the DE algorithm we need to decide which number
of generations is the best for this problem size. We define three
points to test which are G = 70, 100, 130 in order to find a
balance between solution quality and computational time. We
choose 100 because it provides maximum utility with range 0
in an acceptable CPU time as shown in table 2.

Genetic algorithm
There are three main parameters in the genetic algorithm: the

mutation probability z, the population size P and the number
of generations G. These parameters are the most influencing
on the outcome of the algorithm.

As shown in table 3 we tested different values for each of
these parameters in order to find the optimal settings. In the
analysis we used constant parameters z = 0.5, P = 15 and
G = 70 for the Hang Seng (Hong Kong) data-set while testing
each parameter in order to show the difference in the results.
This choice is based on preliminary analysis and recommen-
dations available in the literature.
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10 N. Grishina et al.

Table 2. Differential evolution parameter comparison (Hang Seng data set).

Parameter Parameter value CPU time PT(x) ξ

F 0.05 61.8 0.6237 0
0.15 64.4 0.6235 0.0003
0.5 66 0.62084 0.0013
0.95 69.2 0.56534 0.0269

C R 0.3 61.6 0.62356 0.0002
0.5 61.8 0.6237 0
0.8 65.4 0.6237 0

P 15 35.2 0.62302 0.0031
20 61.8 0.6237 0
25 97.4 0.6237 0

G 70 43.2 0.62342 0.0005
100 61.8 0.6237 0
130 80.6 0.6237 0

First of all the mutation probability should be chosen. We
took several different values for the parameter z. As one can
see in table 3 the CPU time does not change much and does not
depend on the value of this parameter. It is obvious that z =
0.5 gives us a necessary and sufficient mutation component
to obtain the best stability of the solution. The values larger
(z = 0.7) or smaller (z = 0.3) provide the solution with lower
level of stability. In addition, the value of the objective function
in this case is not the best as well.

Population size is a very important parameter for any heuris-
tic algorithm. One should find the right value of P for the
specific problem. There are many recommendations in the
literature which can help to choose suitable parameters for
the genetic algorithm (Fogel 2006) according to the specific
objective function. Most of the guides suggest to use the num-
ber of variables and multiply it by 10 for such complex objec-
tive functions such as prospect theory utility function. At the
same time for the portfolio optimization problem the recom-
mended population size is around 100–200 (Alander 1992). In
our case, there are 31 assets in a data-set and we found testing
the model that reasonable interval for the search is [10, 20] for
such a small matrix. Taking into account that in our algorithm
we use population size P2 we obtained an interval [100, 400]
which covers the first recommendation (31 × 10 = 310) and
the second one [100, 200].

The population size greatly affects the CPU time. Again we
are searching for a balance between computational time and
stability because the quality is not improving much with an
increasing value of P . However, the solution becomes more
volatile once you decrease the population size (see results
for P = 10 in table 3). We define P = 15 as the best for
our experiments because it gives optimal utility and saves
computational time compared to P = 20. Also P = 15
provides a good search space for exploration.

We study the interval [40,100] in order to define the optimal
parameter value for the number of generations. Previously,
we tested extremely high values such as 300 and 400 and the
quality of the solution did not change much versus the value of
100 but the CPU time increases dramatically. One can see in
table 3 that the difference between the results obtained using
G = 70 and G = 100 is not much too, so, we can save time
for approximately the same range of the solution and the value
of objective function while decreasing the value of G results
in a deterioration solution.

As was mentioned previously, we consider values of P and
G parameters as a function of the problem size for the heuristic
approaches and one should choose it proportionally to the prob-
lem size. The values of G and P parameters for the
genetic algorithm for different sized problems can be found
in Appendix 1.

It is important to note that both different algorithms give us
the same value of the objective function. This fact verifies the
solution obtained with the proposed solution approaches and
confirms the accuracy of the implementation of the prospect
theory model into heuristic approaches.

We notice that the value of criterion ξ for the genetic algo-
rithm is slightly worse than the results achieved when testing
the differential evolution algorithm. At the same time the CPU
time of the GA is much less which gives a benefit compared to
the DE. This benefit defines the choice of this solution approach
for further computational study for this research.

5.4. The index tracking problem and prospect theory model

The index tracking problem usually chooses many assets in the
optimal portfolio which is very difficult to manage and rebal-
ance. That is why the IT has a cardinality constraint which then
becomes a computationally challenging problem for
researchers. In this section, we discuss empirical results of
in-sample and out-of-sample performance of the IT and PT
with index tracking problems (with and without cardinality
constraint).As out-of-sample tests we use simulation of bullish
and bearish market.

The computational results presented in this section for index
tracking problems were obtained using five data-sets described
earlier. The first asset in each data-set is the index and is not
included in the investment universe of assets. We also use a
methodology described above for simulation of bullish and
bearish markets in out-of-sample tests.

We analyse the performance of the results by several criteria
such as CPU time, the number of assets in the portfolio n,
tracking error TE, TE over the index TE o, TE under the index
TE u. It should be noted that we use absolute values of TE,
TE o, TE u for our analysis. Table 4 reflects the empirical
results of the experiment for the used sets of data.

It is easy to see from the table that the number of assets in the
PT with IT optimal portfolios is approximately half those in
the IT portfolios. This issue gives a good advantage to the PT
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Prospect theory–based portfolio optimization 11

Table 3. Genetic algorithm parameter comparison (Hang Seng data set).

Parameter Parameter value CPU time PT(x) ξ

z 0.3 36.6 0.6219 0.0084
0.5 36.2 0.62354 0.0002
0.7 36.8 0.62352 0.0004

P 10 15.6 0.60916 0.0713
15 36.2 0.62354 0.0002
20 67.4 0.62361 0.0002

G 40 25.6 0.6235 0.0034
70 36.2 0.62354 0.0002
100 47.2 0.62358 0.0001

with IT in comparison with the IT model because of transaction
costs and convenience of portfolio management.

It is obvious that the TE of the IT model solution is always
less than in PT with IT optimal portfolios but it is still com-
parable. One can notice that the beneficial difference between
parameters TE o for IT and PT with IT models is much greater
(in proportion to the TE) than between parameters TE u for
these models. This means that the PT with IT model chooses
assets with higher return than the IT model using the reference
point (index) only as a starting point but not as a benchmark.
These facts confirm that the PT with IT model focuses more
penalty on not achieving the reference point compared with
exceeding it.

We test the performance of the two models using out-of-
sample simulations and use the same criteria for analysis.
Firstly, we simulate on a bullish market. Table 5 reflects the
empirical results of the experiment.

We should note that the behaviour of the investigated models
in the bullish market is very similar to the in-sample perfor-
mance.According to the TE parameter the PT with IT portfolios
show smaller value compare to the in-sample results.

We also test the performance of two models using an out-
of-sample simulation on a bearish market. It is interesting to
explore the performance of the models in opposite conditions.
In table 6 one can find the out-of-sample empirical results.

In contrast with the previous results, PT with IT model fails
to show a good outcome. This model performs worse in each
data-set for each parameter when compared to the IT. Only TE
of the prospect theory with IT improved and becomes even less
than for IT model portfolios.

Finally, we can conclude that the prospect theory model
with index being a reference point is very effective in an
increasing market due to its mathematical formulation which
makes it desirable to exceed the reference point (in our case
it is the index values). In addition it is more beneficial in
terms of lower number of assets in the optimal portfolio. How-
ever, in a crisis market situation PT with IT model performs
worse than IT. Thus, the prospect theory model adjusted for
index tracking works well in a stable or increasing market
condition.

Cardinality constrained index tracking and prospect theory
with index tracking models

The index tracking model with a cardinality constraint is a
very computationally challenging problem. On the one hand,
the optimal solution is unknown and one should set the termi-
nation criteria very carefully to obtain the best results. On the

other hand, the CPU time required is significantly large versus
the non-cardinality constrained model.

For the index tracking and prospect theory with index track-
ing models with cardinality constraint we used similar asset
thresholds li = 0.01, ui = 1 (i = 1, . . . , N ) and parameter
K which is the number of assets allowed to be included in the
optimal portfolio as described in section 5.2.

Tables 7–9 show the performance of the IT and PT with
IT models with the cardinality constraint in-sample, out-of-
sample (simulation of bullish market) and out-of-sample (sim-
ulation of bearish market) empirical results.

As displayed in the tables the behaviour of the models with
the cardinality constraint is completely similar to the behaviour
of the non-cardinality constrained IT and PT with IT models
in different conditions. It should be noted that CPU time for
behavioural models with the additional constraint does not
change much and it implies that the genetic algorithm deals
well with such type of complex problems. So, the cardinality
constrained models results confirms the conclusion about the
character of compared models made above.

5.5. Summary

In this section, the empirical study and analysis are presented.
We discuss the parameters of the models as well as define
parameters for developed heuristic algorithms applied to the
prospect theory model. We mentioned above that using heuris-
tic solution approaches the parameters of these algorithms is
very important for an accurate solution.

Previously, prospect theory model was considered by other
researchers in the literature. In contrast to similar researches
(Levy and Levy 2004 and Pirvu and Schulze 2012) known
in the literature we obtained the optimal portfolios for the
prospect theory with index tracking model independently and
not as a subset of the compared (index tracking) model effi-
cient set. In addition, we use data with different types of asset
returns distribution but not normal in contrast to Levy and Levy
(2004).

In unpredictable market conditions the index tracking port-
folio selection problem becomes very popular. We investigated
the prospect theory model with the index as the reference
point (with and without cardinality) compared to the basic
index tracking model. It has been found that PT model is more
beneficial in terms of lower number of assets in the portfolio
than index tracking (for models without cardinality constraint)
that reduces transaction costs and makes rebalancing of the
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Table 4. Comparative analysis of the index tracking and prospect theory with index tracking problem (in-sample).

Data-set Model CPU time n TE TE o TE u

Hang Seng IT 0.047 30 0.4290 0.2444 0.1845
PT+IT 70 20 0.8420 0.5690 0.2730

DAX 100 IT 0.109 69 0.3354 0.1835 0.1519
PT+IT 242 51 1.1763 0.7336 0.4427

FTSE 100 IT 0.141 81 0.2855 0.1657 0.1198
PT+IT 250 46 1.1463 0.7919 0.3544

S&P 100 IT 0.125 83 0.2682 0.1553 0.1130
PT+IT 347 67 0.9409 0.5881 0.3529

Nikkei 225 IT 0.266 159 0.1686 0.0921 0.0765
PT+IT 1803 69 0.9802 0.6300 0.3501

Table 5. Comparative analysis of the index tracking and prospect theory with index tracking problem (out-of-sample: simulation of bullish
market).

Data-set Model TE TE o TE u

Hang Seng IT 0.1292 0.1292 0
PT+IT 0.3589 0.3589 0

DAX 100 IT 0.0934 0.0918 0.0016
PT+IT 0.5470 0.5470 0

FTSE 100 IT 0.1304 0.1304 0
PT+IT 0.6335 0.6335 0

S&P 100 IT 0.1271 0.1271 0
PT+IT 0.4432 0.4432 0

Nikkei 225 IT 0.1225 0.1225 0
PT+IT 0.5660 0.5660 0

Table 6. Comparative analysis of the index tracking and prospect theory with index tracking problem (out-of-sample: simulation of bearish
market).

Data-set Model TE TE o TE u

Hang Seng IT 0.1960 0.1960 0
PT+IT 0.1806 0.1806 0

DAX 100 IT 0.2991 0.1673 0.1317
PT+IT 0.2928 0.1481 0.1446

FTSE 100 IT 0.3013 0.1217 0.1795
PT+IT 0.3136 0.1164 0.1972

S&P 100 IT 0.3026 0.1172 0.1854
PT+IT 0.2984 0.1085 0.1899

Nikkei 225 IT 0.2750 0.1342 0.1408
PT+IT 0.3017 0.0880 0.2137

Table 7. Comparative analysis of index tracking and prospect theory with index tracking problem with cardinality constraint (in-sample).

Data-set Model CPU time K n TE TE o TE u

Hang Seng ITcc 102 15 15 0.5760 0.3316 0.2448
PT+ ITcc 74 15 15 1.1871 0.7828 0.4044

DAX 100 ITcc 200 20 20 0.5889 0.3280 0.2609
PT+ ITcc 275 20 20 1.3309 0.9616 0.3693

FTSE 100 ITcc 193 25 25 0.6650 0.3819 0.2831
PT+ ITcc 323 25 24 1.4432 1.0323 0.4109

S&P 100 ITcc 176 25 25 0.5555 0.3223 0.2332
PT+ ITcc 459 25 22 1.2972 0.9111 0.3861

Nikkei 225 ITcc 612 25 25 0.7211 0.3845 0.3367
PT+ ITcc 2780 25 25 1.3179 0.9637 0.3542

portfolio more convenient. We also noticed that returns of the
PT with index tracking model mostly exceed the index returns
which confirms our previous conclusion about the impact of the

reference point. However, in a bearish market the prospect the-
ory model shows greater losses compared to the index tracking
model.
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Table 8. Comparative analysis of index tracking and prospect theory with index tracking problem with cardinality constraint (out-of-sample:
simulation of bullish market).

Data-set Model TE TE o TE u

Hang Seng ITcc 0.1519 0.1519 0
PT+ ITcc 0.3915 0.3915 0

DAX 100 ITcc 0.1202 0.1195 0.0007
PT+ ITcc 0.7190 0.7190 0

FTSE 100 ITcc 0.1826 0.1826 0
PT+ ITcc 0.7285 0.7285 0

S&P 100 ITcc 0.1674 0.1674 0
PT+ ITcc 0.6149 0.6149 0

Nikkei 225 ITcc 0.1296 0.1296 0
PT+ ITcc 0.6326 0.6326 0

Table 9. Comparative analysis of the index tracking and prospect theory with index tracking problem with cardinality constraint (out-of-
sample: simulation of bearish market).

Data-set Model TE TE o TE u

Hang Seng ITcc 0.2484 0.2484 0
PT+ ITcc 0.1992 0.1992 0

DAX 100 ITcc 0.2907 0.1761 0.1145
PT+ ITcc 0.3343 0.1652 0.1691

FTSE 100 ITcc 0.3248 0.1165 0.2083
PT+ ITcc 0.3268 0.0954 0.2313

S&P 100 ITcc 0.2795 0.1208 0.1586
PT+ ITcc 0.3066 0.0876 0.2189

Nikkei 225 ITcc 0.2939 0.1720 0.1219
PT+ ITcc 0.3366 0.0943 0.2423

6. Conclusion

The behavioural approach to portfolio theory has become very
popular in the last decade because the market has demonstrated
significant instability. There is much theoretical evidence in
the literature that behaviourally based models could help to
decrease the risk of the portfolio since they take into account
natural loss aversion and risk aversion biases of the investors.
However, we found that there is a lack of practical and empir-
ical studies in the literature which could show and prove these
benefits and shed light on the performance of these models in
different market situations.

In this research, we studied a behaviourally based model
namely the prospect theory with index tracking model, using a
comparative analysis with the traditional index tracking model.
In order to investigate the benefits of a behavioural approach
we implemented cardinality constraints in these models and
tested the results out-of-sample using simulations of bullish
and bearish return distributions. The results were presented for
five publicly available data-sets which reflect the dynamics of
major world markets.

We developed several solution approaches for the prospect
theory model to obtain an accurate solution using heuristics.
The differential evolution algorithm and the genetic algorithm
were implemented in Matlab in order to do this. We also jus-
tify the parameter choice for these models using an empirical
study due to the importance of the parameters in heuristic
algorithm applications. However, we propose some limitations
on suggested solution approaches. These are mainly connected
with the increasing size of problem data-sets and they affect
CPU time and convergence of the algorithms. In order to use
these algorithms for bigger data-sets, the generalization of

some algorithm stages should be done (for example, regarding
crossover and mutation).

The application of the prospect theory with index tracking
model to the portfolio optimization problem shows that the
model obtains higher returns in comparison with the basic
index tracking model. This can be explained by the effect of the
reference point. Prospect theory wants to exceed the reference
point (for example, the risk-free rate) as much as possible
reflecting psychological biases. So, this reference point steers
the model to choose the assets with higher returns no matter at
which desired level of return for the whole period is set.

We can conclude that prospect theory optimal portfolios
performed better in terms of returns than the index tracking
model and the index itself, both in-sample and in a bullish
market. However, the PT model was slightly worse in a bearish
market compared to the index tracking model.At the same time
it has been found that the PT with IT model is normally less
diversified than the IT model which is a benefit in terms of
transaction costs and portfolio management issues.

We would like to point out that in this paper prospect theory
was applied to a large universe of assets. Previously, only
small experiments were presented in the literature (for exam-
ple 2–3 assets). Thus, this empirical study aims to encour-
age the use of prospect theory in practice along with mean
variance and index tracking models for specific real market
conditions.

At the same time, the use of a behaviourally based approach
to the portfolio selection problem has potential limitations in
applications to derivatives because it is difficult to implement
different conditions and types of the contracts. The question
here is how to implement additional information in to the model
and how to identify the influence of the behavioural biases to
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14 N. Grishina et al.

the results in the analysis. In addition, it is not clear which
solution approach can be applied to this problem.

It should be noted that the problem of portfolio optimization
using a behavioural approach is very challenging. There are
different ways to investigate its solution and performance.

As was proposed in this research, we developed several
heuristic solution approaches for the prospect theory model
taking into account the specific features of the model. As an
idea for future work, one can bring more intelligent choice
of the assets in the portfolio into the breeding stage of the
genetic algorithm based on the observations and preferences
of the studied model. In each generation one distinguishes
the assets which are included in the best portfolio and use
this information for the breeding stage in the next generation.
Instead of checking all assets in the data, the algorithm could
find the preferable one faster than using the information about
frequency of appearance of assets in previous best portfolios.
It could help to decrease the CPU time for this algorithm
by reducing the search space of suitable assets for the best
portfolios and decreasing the number of generations.
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Appendix 1. Parameters G and P of the heuristic
approaches

Remark. The parameters of G and P for the Nikkei 225 data-set is equal
to the S&P 100 data-set in our empirical study because specifically
for these returns (the Nikkei 225 set) the genetic algorithm finds the
best solution quickly enough. So, we do not need to increase the
number of generation and population size. The resulting portfolio is
undiversified compare to the number of assets available in total. The
algorithm defines the preferable assets very fast and the rest of time
just plays with the weights.

Table A1. Genetic algorithm parameter comparison for the DAX
100 data set.

Parameter Parameter value CPU time PT(x) ξ

G 150 444 0.5937 0.0152
180 550 0.6442 0.0002
210 652 0.6443 0.0001

P 35 415 0.5694 0.0032
40 550 0.6442 0.0002
45 697 0.6437 0.0001

Table A2. Genetic algorithm parameter comparison for the FTSE
100 data set.

Parameter Parameter value CPU time PT(x) ξ

G 160 532 0.823 0.0043
185 630 0.8429 0.0004
220 718 0.8429 0.0002

P 37 479 0.8423 0.0164
42 630 0.8429 0.0004
47 755 0.8431 0.0002

Table A3. Genetic algorithm parameter comparison for the S&P
100 data set.

Parameter Parameter value CPU time PT(x) ξ

G 160 586 0.7353 0.0172
190 721 0.7822 0.0006
220 953 0.7853 0.0004

P 40 542 0.7421 0.0043
45 721 0.7822 0.0006
50 994 0.7864 0.0003

Table A4. Genetic algorithm parameter comparison for the Nikkei
225 data set.

Parameter Parameter value CPU time PT(x) ξ

G 160 1050 −0.9555 0.0001
190 1179 −0.9894 0
220 1547 −0.9894 0

P 40 939 −0.9468 0.0021
45 1179 −0.9894 0
50 1486 −0.9894 0
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